Feeds:
Posts
Comments

Archive for the ‘MODIS’ Category

It is said that a picture says a thousand words…well in this case let’s just say 434 words, as are contained in this post. Anyway, I’d like to point out six features in this morning’s Nighttime Microphysics RGB.  The image below (MODIS Nighttime Microphysics RGB) showed several features of varying degrees of operational relevance.

MODIS Nighttime Microphysics RGB with annotations valid 0755 UTC 16 July 2014

MODIS Nighttime Microphysics RGB with annotations valid 0755 UTC 16 July 2014

 

A myriad of cloud features can be observed, including fog in the valleys of central Appalachia, deep convective clouds along the Florida coast, patches of thin and thick cirrus over north-central Alabama, and low stratus clouds in Missouri…to name just a few.  Sure, this isn’t an exhaustive list of the potential cloud features to observe, but showcases the ability to contrast effectively between different cloud types.  Of perhaps significant interest is the ability to see the contrasting airmasses displayed across the Southeast region.  Notice the  pinkish colors north and west of the yellow curved line that stretches from central Louisiana to southern Virginia.  This represents a lower relative contribution of blue color, or lesser longwave radiation at the 10.8 µm wavelength, which is indicative of cooler temperatures.  To the south and east of this line, much more blue is apparent, which is thus indicative of warmer temperatures.   Surface observations valid at about the same time have been overlaid with the RGB image to provide temperature data context.  Air and dew point temperatures are around 10 degrees F cooler behind the line/front, but notice that the northerly wind shift is still on the south/east side of the line at such locations as Montgomery, AL and Columbus, GA.  At those locations, dew point temperatures were still 70 and 71 F, respectively, with air temperatures at 72 F.  So, the gradient in temperatures still lingered behind the surface front and is well depicted in the RGB imagery.  This type of information can be valuable to forecasters, as temperature, moisture, and wind characteristics are often complex in the vicinity of surface fronts.  Thus, while wind shifts may be observed initially, as in this case, the imagery shows the location of the temperature gradient much better.

The importance of this type of imagery is that it offers a much more effective assessment of meteorological phenomena than existing GOES imagery.  The only problem currently is the limitation of available imagery to forecasters, since these are from polar-orbiting platforms (Terra, Aqua, Suomi NPP), and thus provide just a few snapshots per night over a given location.  Nevertheless, the imagery form the VIIRS and MODIS instruments offer added value to existing GOES imagery and serve as valuable teaching and preparatory aids for future GOES-R and JPSS missions.

Read Full Post »

I didn’t have a chance to make this post last week when the imagery were more time-relevant.  Nevertheless, I wanted to point out another example of the usefulness of MODIS and VIIRS imagery over current GOES imagery and show the usefulness of exciting products and imagery to come!  First, let’s take a look at the color-enhanced GOES-IR image below from the morning (0715 UTC) of June 20th.

Color-enhanced GOES-IR (11um) image valid 0715 UTC 20 June 2014

Image 1.  Color-enhanced GOES-IR (11 µm) image valid 0715 UTC 20 June 2014

 

I’ve placed the yellow circles in the image for a reason, which you’ll see below.  Further down, I’m going to show areas of fog displayed in the MODIS and VIIRS imagery, and granted, this is not the standard GOES channel difference (11-3.9 µm) typically used for making fog assessments.   However, this post is meant to show current (MODIS / VIIRS) and future capabilities (GOES-R / JPSS) that will make fog detection and cloud differentiation much more easy for the operational forecaster.  So, in the image above, fog is nearly unidentifiable as it was in the 11-3.9 µm channel difference image that morning (not shown).  Mainly high cirrus clouds can be observed scattered across the region.  Now, let’s take a look at the MODIS “fog” product, or channel difference (11-3.9 um) product valid at about the same time (Image 2).

Color-enhanced MODIS 11-3.9 u m product valid 0718 UTC 20 June 2014

Image 2.  Color-enhanced MODIS 11-3.9 µm image valid 0718 UTC 20 June 2014

Notice that in the same areas we can now begin to see low clouds (indicated by yellow colors) scattered around the valleys of the southern Appalachian region.  While the GOES-East imager is capable of detecting larger scale fog often in the valleys in the eastern circle, fog in the valleys in the western circle present challenges for the current GOES-East instrument, and is often not shown very well (even in the standard 11-3.9 µm channel difference).    Next, let’s take a look at a VIIRS Nighttime Microphysics RGB valid at about the same time.

VIIRS Nighttime Microphysics RGB valid 0723 UTC 20 June 2014

Image 3.  VIIRS Nighttime Microphysics RGB valid 0723 UTC 20 June 2014

In the RGB imagery it is much easier to detect the extent of the fog, making the operational forecast process much more effective.  Notice also that it is possible to see the fog through the higher clouds around the TN/GA/NC border region.  Not only does the resolution of the VIIRS and MODIS instruments allow for superior fog detection, but the RGBs in particular offer tremendous operational advantages.  As a user of RGBs for about 2 years now, I am convinced that this type of imagery has a relevant and needed place in future operational forecasting.  Of course, it will take time for forecasters to become accustomed and adjust to the new imagery, but it will happen.

 

Read Full Post »

MODIS Air Mass RGB Imagery with limb correction applied to the water vapor and ozone channels.  1859 UTC, 13 May 2014

MODIS Air Mass RGB Imagery with limb correction applied to the water vapor and ozone channels. 1859 UTC, 13 May 2014

The Air Mass RGB imagery product via MODIS has often appeared to lack “green” coloring near the edge of the swath and there have been noticeable differences between the channels from Aqua and Terra used within the RGB.  Forecasters from the Great Falls, MT and Albuquerque, NM WFOs applying this experimental data noted these issues.  The above image is a limb and bias corrected version of the Air Mass RGB.  The water vapor and ozone channels tend to “cool” near the swath edge as they pass through more atmosphere and the differences in satellite instrument quality result in physical characteristics between the images having different coloring.  SPoRT has worked to develop a non-linear function to correct much of the limb cooling as well as a bias correction, both through comparison of the MODIS instruments to the EUMETSAT SEVIRI instrument.  Annotations to the image attempt to classify the various features indicated by the resulting composite color during a MODIS pass from 1859 UTC on 13 May 2014 when a cold air mass was moving into the upper Midwest.  Simple interpretation guides can be found via SPoRT’s Training page or EUMETSAT. For comparison, additional plots of GOES Water Vapor,  and NAM 500mb Temperature, Humidity, and Height 0-hour analysis and 6-hour forecasts are provided below for reference. There is also a single image of the Hybrid GEO/LEO Water Vapor / Air Mass RGB product that loops GOES Water Vapor imagery and inserts the MODIS Air Mass RGB swath as it is available because the RGB is largely made up of water vapor channels.  Both the Hybrid and single-swath MODIS files are available in netCDF format for use in AWIPS I or II as well as KML format.

This new limb/bias corrected Air Mass RGB product is credited in large part to graduate student work being done at the University of Alabama Huntsville in conjunction with NASA/SPoRT. Primary contributors are:
Nicolas Elmer (UAH graduate student)
Dr. Emily Berndt (NASA/SPoRT Post-Doctoral Scientist)
Dr. Gary Jedlovec (NASA/SPoRT PI)

Additional contributors include:
Frank LaFontaine (Raytheon, Data processing and analysis)
Kevin McGrath (Jacobs, Product code development and real-time processing)
Matthew Smith (UAH, Data processing and product code development)
Dr. Andrew Molthan (NASA/SPoRT, RGB code development and research science)

g13.2014133.1845_US_wv

GOES Water Vapor Imagery at 1845 UTC, for 13 May 2014

 

 

 

 

NAM 500mb, 0-hour forecast valid 1200 UTC, 12 May 2014 of Temperature, Humidity, and Height via

NAM 500mb, 0-hour forecast valid 1200 UTC, 13 May 2014 of Temperature, Humidity, and Height via NCAR RAL website

NAM 500mb, 0-hour forecast valid 1200 UTC, 13 May 2014 of Temperature, Humidity, and Height via NCAR RAL website

N

NAM 500mb, 6-hour forecast valid 1800 UTC, 13 May 2014 of Temperature, Humidity, and Height via NCAR RAL website

NAM 500mb, 6-hour forecast valid 1800 UTC, 13 May 2014 of Temperature, Humidity, and Height via NCAR RAL website

CAR RAL website

Example: SPoRT Hybrid GEO/LEO Water Vapor and Air Mass RGBimagery

Example: SPoRT Hybrid GEO/LEO Water Vapor and Air Mass RGBimagery

Read Full Post »

This was one of those storms that people will talk about for years, especially those that were directly affected by it.  It all started with three separate shortwaves that all phased together once off the Mid-Atlantic coast, far enough offshore to limit any direct effects save for some unusual late season snow and gusty winds the next day.  The highest impact area included Cape Cod, Nantucket, Nova Scotia, and New Foundland.  I’m sure any ships that were in the vicinity were not happy with this situation!

GOES-Sounder RGB Air Mass animation valid 03/24/14-03/26/14.

GOES-Sounder RGB Air Mass animation valid 03/24/14-03/26/14.

The evolution of the nor’easter can be seen in the GOES Sounder RGB Air Mass animation above.  A southern stream system originating in the Gulf of Mexico moved east of Florida while two other shortwaves dropped southeast out of Canada.  All of the pieces combined near the North Carolina coastline, but the explosive deepening took place as the combined system moved northeast away from the Mid-Atlantic.  There appears to be a few stratospheric intrusions, but the most impressive intrusion occurs with the final shortwave as noted by the dark oranges and reds that appear at the end of the day on 03/25.  When models are forecasting a phasing situation, this product can be quite useful in identifying the features and observing the stratospheric drying seemingly “bleed” from one shortwave to the other.

MODIS RGB Air Mass product valid at 1540 UTC on 03/26/14.

MODIS RGB Air Mass product valid at 1540 UTC on 03/26/14.

MODIS RGB Air Mass product with ASCAT winds overlaid valid at 1540 UTC on 03/26/14.

MODIS RGB Air Mass product with ASCAT winds overlaid valid at 1540 UTC on 03/26/14.

The two MODIS RGB Air Mass products above show the nor’easter near peak intensity.  Notice how distinct the gradient between oranges and greens is in this image, almost as though you can see the upper portion of the frontogenesis, well behind the actual front.  The intensity of the stratospheric intrusion is quite evident by the dark pinks near the center of the cyclone.  The second image shows the wind field overlaid from ASCATB.  Notice the large area of hurricane force winds (red wind barbs) near the bent-back front, in the comma-head of the cyclone.  This area of wind affected parts of Southeast Massachusetts, including Nantucket where winds gusted from 60-85 mph.  Nantucket recorded a wind gust of 82 mph and about 10″ of snow.  Meanwhile, Nova Scotia bore the brunt of this beast with wind gusts of 129 mph at the Bay of Fundy and 115 mph in Wreckhouse.  Waves were equally impressive with altimeter readings between 40-50 ft and a buoy report of 52.5 ft.

GOES-13 Infrared imagery with the GLD-360 30-minute lightning density product overlaid.

GOES-13 Infrared imagery with the GLD-360 30-minute lightning density product overlaid.

Another interesting aspect of this storm was the two distinct areas of thunderstorms that erupted.  I overlaid the OPC and TAFB offshore zones for reference.  Notice well east of the Bahamas there are possible supercell thunderstorms associated with the southern shortwave energy.  Meanwhile, as the strong northern stream shortwaves exit the NC coastline, two areas of thunderstorms developed with the easternmost storm exhibiting supercell characteristics.  Although the lightning was not as intense with this northern area, I would speculate that the storms were associated with very strong wind gusts due to the dry air associated with the stratospheric intrusion.

VIIRS Visible image valid at 1719 UTC on 03/26/14.

VIIRS Visible image valid at 1719 UTC on 03/26/14.

VIIRS Visible image with the 18 UTC OPC surface analysis overlaid.

VIIRS Visible image with the 18 UTC OPC surface analysis overlaid.

I’ll finish this entry with two VIIRS Visible images above showing the majestic beauty of this nor’easter.  The 18 UTC OPC surface analysis depicts the storm at a maximum intensity of 955 mb, after a 45 mb drop in 24 hours!  This qualifies as one of the most explosive cyclones on record.  Another tidbit. . .this was the strongest storm in this part of the Atlantic since Hurricane Sandy (2012).

Thanks for reading!

Read Full Post »

VIIRS True Color RGB imagery produced by NASA/SPoRT.  Southwest region domain at 1836UTC, 11 March 2014.

VIIRS True Color RGB imagery produced by NASA/SPoRT. Southwest region domain at 1836UTC, 11 March 2014.

In the southwest CONUS region, severe to extreme drought conditions exist in many areas.  In particular southwest Colorado, northeast New Mexico and the Texas and Oklahoma panhandle areas are very dry according to the U.S. Drought Monitor.  A building high pressure area developed a strong pressure gradient across these areas during the afternoon of 11 March 2014, resulting in 20-30 kt sustained northerly winds with gusts over 40 kt. Combined with the dry conditions, WFOs in the southwest have been anticipating blow dust events to be large and more frequent with strong Spring cyclones. VIIRS True Color RGB imagery (above) shows the blowing dust in Colorado and Texas, but the clouds in Colorado and Kansas have a similar color and the dry ground characteristics in Texas also look similar in color to the dust.  To provide a more efficient analysis of the blowing dust, VIIRS and MODIS can be used to create an RGB imagery product that shows blowing dust in shades of magenta to differentiate it from clouds and ground features.  This is done using the EUMETSAT recipe for the “Dust RGB” per their “Best Practices” after years of experience with the MeteoSat Second Generation SEVIRI instrument.  This geostationary instrument has similar capabilities to that of the future GOES-R ABI instrument.  Hence VIIRS and MODIS provide operational utility now and demonstrate future capabilities that all U.S. forecasters can use to be ready for the next generation of satellite products.  The VIIRS and MODIS passes show three times from this afternoon to aid forecasters with tracking the dust event.

20140311_1836_sport_viirs_swregion_dust_annotated

MODIS Dust RGB Imagery for 1941UTC 11 March 2014

MODIS Dust RGB Imagery for 1941UTC 11 March 2014

VIIRS Dust RGB Imagery for 2019UTC 11 March 2014

VIIRS Dust RGB Imagery for 2019UTC 11 March 2014

Read Full Post »

Well, it’s February and it’s the East Pacific off of California, so the short answer is no.  But. . .what an amazing structure, right?  We haven’t seen anything this good looking in the tropical Atlantic in years!  But I digress. . .

MODIS RGB Air Mass product valid at 0621 UTC on 02/28/14.  The blue lines are the boundaries of OPC (north), TAFB (south), and Hawaii (west)

MODIS RGB Air Mass product valid at 0621 UTC on 02/28/14. The blue lines are the boundaries of OPC (north), TAFB (south), and Hawaii (west)

MODIS RGB Air Mass product valid at 1032 UTC on 02/28/14.

MODIS RGB Air Mass product valid at 1032 UTC on 02/28/14.

The first image was collected four hours before the second image and you can see how the center of the intense storm developed an “eye-like” feature (images courtesy of NASA SPoRT).  Notice the distribution of the pinks and reds in both images as well.  That is dry, stratospheric air filling the center of the strong upper-level low (~300-500 mb).  The second area shows an additional area of pink approaching the southern California coast.  This area is associated with strong instability that has led to rare California thunderstorms.

So, how do we know if there is stratospheric air?

AIRS Total Column Ozone product valid at 2200 UTC on 02/27/14.

AIRS Total Column Ozone product valid at 2200 UTC on 02/27/14.

AIRS Ozone Anomaly Product valid at 2200 UTC on 02/27/14.

AIRS Ozone Anomaly Product valid at 2200 UTC on 02/27/14.

The first image above is the AIRS Total Column Ozone product developed at NASA SPoRT.  The color bar on the left is not correct.  The main idea is that the warmer (cooler) the colors, the more (less) ozone is in the atmospheric column.  The green colors indicate ozone levels above 200 Dobson Units (ozone unit of measurement) with the magenta areas indicating ~500 Dobson Units.  The second image shows the AIRS Ozone Anomaly product with the first level of blue indicating 125% of normal, while the yellow region indicates >200% of normal ozone at that latitude and geographic location.  Stratospheric air is associated with high levels of ozone and potential vorticity which can help identify the strength of the upper-level low.  These images show the connection of this ozone pocket with the “reservoir” of ozone located in the northern latitudes at this time of year.

AIRS Total Column Ozone Product valid at 1000 UTC on 02/28/14.

AIRS Total Column Ozone Product valid at 1000 UTC on 02/28/14.

AIRS Ozone Anomaly valid at 1000 UTC on 02/28/14.

AIRS Ozone Anomaly valid at 1000 UTC on 02/28/14.

As the upper-low cut off and became stacked over the surface low (~971 mb), you can see how the high concentration of ozone becomes more focused over the storm.  Once again, the magenta coloring indicates ozone levels >500 Dobson Units.  The anomalies are more incredible with a large area of >200% of normal directly west of southern California.

I will continue to work with forecasters at OPC, TAFB, SAB, and WPC on discovering ways to use these products in conjunction with the RGB Air Mass products to gauge storm strength and look for signals upstream of developing tropopause folds and stratospheric intrusions.

GOES-15 Visible imagery with the GLD-360 30-minute lightning density product overlaid.

GOES-15 Visible imagery with the GLD-360 30-minute lightning density product overlaid.

The ozone isn’t the only impressive part of this storm.  Notice the occasional bursts of lightning within the spiral bands of the parent storm.  Although not completely unusual, this is a great indicator of how much energy is available to this storm.

GOES-Sounder RGB Air Mass product with GLD-360 lightning strikes overlaid.

GOES-Sounder RGB Air Mass product with GLD-360 lightning strikes overlaid.

I put together a longer animation of the GOES-Sounder RGB Air Mass product with the GLD-360 lightning strikes overlaid.  Note the first system that came ashore in California earlier this week, then moved over the four-corners regions with plenty of lightning, especially for this time of year.  The current storm is seen lurking offshore with more lightning developing in a band of thunderstorms that moved from Los Angeles to just north of San Diego.  This system will be responsible for the next bought of winter weather for the Midwest to the Mid-Atlantic next week.

Thanks for reading and as always, feel free to contact me with questions and feedback!

Read Full Post »

The Huntsville County Warning Area received widespread 3-5 inch snowfalls Wednesday night, with a few sites reporting as high as 10 inches!  While it’s melting quickly today with temperatures in the mid and upper 30s, the snow cover did hang around long enough to be captured by the mid-morning MODIS pass (though we are on the very edge of the pass, so the bowtie distortions are noticeable).  That might be nothing new, but this is the first time we’ve been able to view such imagery in AWIPS II.

MODIS Snow/Cloud RGB Image valid 1546 UTC 13 February 2014

MODIS Snow/Cloud RGB Image valid 1546 UTC 13 February 2014

MODIS True Color Image valid 1546 UTC 13 February 2014, viewed in AWIPS II CAVE

MODIS True Color Image valid 1546 UTC 13 February 2014, viewed in AWIPS II CAVE

The Snow-Cloud RGB is particularly illuminating, as it effectively illustrates the downslope-induced cloud breaks over northern Georgia.

Great job to the SPoRT AWIPS II team on helping us get these data back into AWIPS!  There are still some kinks to work out, but this essentially restores the SPoRT data feed that was in place before our A2 upgrade in June 2012.

Read Full Post »

SPoRT is conducting an assessment of RGB imagery for Aviation and Cloud Analysis with Alaska WFO partners.  A 17 minute training module for high-latitude application of nighttime RGBs with an Alaska example was created by SPoRT to support this assessment (see SPoRT training page to download or launch module). The Juneau WFO provided feedback for 1/24/14.  Here is a part of their feedback regarding the value of the Nighttime Microphysics RGB imagery from MODIS and VIIRS and an example image from AWIPS/D2d.

WFO Juneau feedback:
“… the microphysics image was very helpful in picking out where the fog and low clouds were in the complex terrain that is the SE panhandle. most of the fog this morning was confined to the narrower valleys and channels while the wider channels were mostly clear. This is possibly due to higher winds still present in the wider channels limiting fog formation there. It also showed little or no fog and low clouds out in the gulf. The microphysics image was very helpful with figuring out fog for zone and marine forecasts. It also helped out with the TAFs with seeing if there were any higher clouds layers above the fog layer.”

AJK_Ntmicro_assess_feedback_for_blog_20140124_0736_annotated

Read Full Post »

A well defined TROWAL feature that set up over the high plains from eastern NM into western TX and KS on December 21, 2013 was captured very well by the NESDIS snowfall rate product.   A composite radar reflectivity loop in the first image below summarizes the overall evolution of this feature between 12 UTC on December 21st and 00 UTC on the 22nd (click image to loop and enlarge).  Initially temperatures were too warm for snow across much of the area however as a potent cold front shifted south over the region rain changed over to snow.  In the area of greatest instability the snow became heavy at times from near Tucumcari, NM (KTCC) to Dalhart, TX (KDHT).

Composite Radar Reflectivity Loop December 21, 2013.  Click to enlarge.

Composite Radar Reflectivity Loop December 21, 2013. Click to loop and enlarge.

The following series of images compare hourly precipitation reports at several sites across western TX and KS with the NESDIS snowfall rate product.  The first image was captured at 2040UTC and the AWIPS cursor readout at KDUX (Dumas, TX) is shown.  Note the observation is reporting an hourly precipitation accumulation of 0.05 (P0005) with moderate snowfall and a visibility of 1/2SM.  The cursor readout comparison with the QPE product is 0.0544 in/hr.  The following sample point valid for KPYX (Perryton, TX)  is reporting a visibility of 1/4SM however no weather or precipitation is available since it is only an AWOS.  However, the QPE product is sampling a precipitation rate of 0.1064 in/hr which converting with a simple 10:1 snow ratio would equate to heavy snow at 1″ per hour.  The next image was captured at 2236UTC and the cursor readout at KDDC (Dodge City, KS) is shown.  Note the observation is reporting an hourly precipitation accumulation of 0.07 (P0007) with moderate snowfall and a visibility of 1/2SM.  The QPE comparison in the readout shows a rate of 0.092 in/hr.  These values are exceptionally representative of the current conditions and the latency is less than 30 minutes.

NESDIS QPE valid 2040 UTC December 21, 2013.  Note the sample point comparison for the observation at KDUX (Dumas, TX).

NESDIS QPE valid 2040 UTC December 21, 2013. Note the sample point comparison for the observation at KDUX (Dumas, TX).

NESDIS QPE valid 2040 UTC December 21, 2013. Note the sample point comparison for the observation at KPYX (Perryton, TX).

NESDIS QPE valid 2040 UTC December 21, 2013. Note the sample point comparison for the observation at KPYX (Perryton, TX).

NESDIS QPE valid 2236 UTC December 21, 2013. Note the sample point comparison for the observation at KDDC (Dodge City, KS).

NESDIS QPE valid 2236 UTC December 21, 2013. Note the sample point comparison for the observation at KDDC (Dodge City, KS).

After the storm system pulled out of the region the Snow-Cloud RGB product provided a stellar view of this mesoscale band of snowfall.  Modifying temperatures over the following days significantly eroded snowpack in most areas except where the heaviest snow fell.  Local storm reports obtained from the Iowa State website indicated between 6 and 11 inches of snow impacted the area within the central axis of the TROWAL feature.

Snow-Cloud RGB valid at 1704 UTC December 22, 2013.

Snow-Cloud RGB valid at 1704 UTC December 22, 2013.

Snow-Cloud RGB valid at 2014 UTC December 24, 2013.

Snow-Cloud RGB valid at 2014 UTC December 24, 2013.

Read Full Post »

Late yesterday evening (Dec 17th) fog began forming along coastal areas of Lousiana and Texas.  By 10 pm CST, visibilities at some locations along the coast had already dropped to less than 1 SM.  The fog continued to intensify, with visibilities falling to around 1/4 SM or less at many locations during the early morning hours this morning (Dec 18th).   By 2 am CST (0800 UTC), the visibility had fallen to near 0 SM in portions of SW Louisiana as noted by the observation at Jennings (3R7, near Fenton in the image, image 1).

GOES 11-3.9 Spectral Difference Image, with Ceiling (AGL) and Visibility (SM) observations 18 Dec 2013 0800/0815 UTC

Image 1.  GOES 11-3.9 Spectral Difference Image, with Ceiling (AGL) and Visibility (SM) observations 18 Dec 2013 0800/0815 UTC

In this standard GOES spectral difference imagery however, the fog is very diffcult to visually discern, likely due to it’s very shallow depth.   There is some indication of the fog, with slightly brighter pixels in areas of southern LA and SE Texas.  However, notice the better (albeit slightly) detection of the fog in the Nighttime Microphysics RGB products from the VIIRS and MODIS instruments below (images 2 and 3, respectively).  The fog in these images appears as a pinkish-gray color.

Image 2.  Suomi NPP VIIRS Nighttime Microphysics RGB 18 Dec 2013 0808 UTC

Image 2. Suomi NPP VIIRS Nighttime Microphysics RGB 18 Dec 2013 0808 UTC

Image 3.  Aqua MODIS Nighttime Microphysics RGB 18 Dec 2013 0804 UTC

Image 3. Aqua MODIS Nighttime Microphysics RGB 18 Dec 2013 0804 UTC

I think the fog is a little easier to see in the MODIS image, which may be due to higher resolution and small differences in channel wavelengths between the VIIRS and MODIS instruments.  Nevertheless, the fog in all of the imagery is rather subtle and will require development of pattern recognition by forecasters.  Sampling the color contributions, I found that the primary changes between areas of fog and areas without occurred in the green color (assigned the ~10.8-3.9/3.7 channel difference), which would be expected.  For example, when taking a color sample from the pinkish-gray band of fog in SW Louisiana (near Jennings) from the MODIS image, I came up with: Red-180, Green-137, Blue-165.  Meanwhile, sampling of a pixel in central Louisiana without fog: Red-167, Green-99, Blue-150.

So, how did the fog appear in the Day-Night Band RGBs?  Not very well at all, as you can see in the next couple of images…

Image 4.  Suomi NPP VIIRS Day-Night Band Radiance RGB 18 Dec 2013 0808 UTC

Image 4. Suomi NPP VIIRS Day-Night Band Radiance RGB 18 Dec 2013 0808 UTC

Image 5.  Suomi NPP Day-Night Band Reflectance RGB 18 Dec 2013 0808 UTC

Image 5. Suomi NPP Day-Night Band Reflectance RGB 18 Dec 2013 0808 UTC

I wasn’t able to detect any fog at all in the Day-Night Band RGB imagery.  However, there is still potentially important information to glean from all of this.  If the fog is evident (even slightly) in the NT Microphysics RGB imagery mainly due to the 10.8-3.7/3.9 channel difference, but is essentially translucent in the visible spectrum (Day-Night Band), then it is likely very shallow.  This could be helpful for determining the duration of the fog during a change of conditions, such as the development of mixing after sunrise (i.e. shallow fog dissipation will be quicker than thick fog dissipation).

Notice in the GOES visible loop below (images at 0445 UTC and 0601 UTC) that the fog dissipated very quickly after sunrise (click the expanded image to obtain the loop).

Loop of GOES visible images at 1445 and 1601 UTC with observations of

Loop of GOES visible images at 1445 and 1601 UTC with ceiling (AGL) and visibility (SM) observations  oat 1500 and 1600 UTC

The Corpus Christi, Houston and Slidell offices all issued Dense Fog Advisories or Special Weather Statements concerning the fog in their respective County Warning/Forecast Areas during the early morning hours.

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 93 other followers