Soil Moisture Analysis of Fort Craig Wildfire

NWS Albuquerque recently began ingesting the updated SPoRT CONUS LIS products in our new AWIPS II system as part of our continued collaboration with SPoRT. These products have already peaked the interest of several local, state, and federal partners. Short-term drought conditions have improved steadily since late winter as more frequent and widespread precipitation events impacted the state. Overall, deep-layer soil moisture conditions have improved substantially compared to this time last year (Fig. 1).

Figure 1. Deep soil moisture (0-200cm) 1-year change valid 12Z 27 July 2015.

Figure 1. Deep soil moisture (0-200cm) 1-year change valid 12Z 27 July 2015.

The SPoRT LIS products have become a valuable tool for drought monitoring during our monthly drought workshops. Several state and federal partners noted on our most recent call in late July that these new products provided an additional layer of situational awareness and infuse more science into the drought monitoring process. These products have also peaked the interest of our fire weather community, in particular Incident Meteorologist Brent Wachter. New Mexico during late July is generally under the influence of higher humidity with periodic wetting rainfall events. The convective nature of the precipitation however tends to bring about a patchwork of “have’s and have-nots”. The Fort Craig wildfire broke out in a dry pocket of south central Socorro County within the middle Rio Grande Valley during the afternoon of 26 July 2015. The New Mexico State Climatologist, Dave DuBois, captured the wildfire on camera and posted the image to Twitter shortly thereafter (Fig. 2).

Figure 2. A distant view of the Fort Craig wildfire captured by the New Mexico State Climatologist, Dave DuBois, around 830am, July 27, 2015.

Figure 2. A distant view of the Fort Craig wildfire captured by the New Mexico State Climatologist, Dave DuBois, around 830am, July 27, 2015.

The SPoRT LIS 0-10cm volumetric soil moisture at 12Z 28 July 2015 showed the corresponding dry area where the wildfire developed (Fig. 3). Les Owen from the New Mexico Department of Agriculture also noted this area of drying within Socorro County in what he called his “windshield survey” in mid to late July. The Fort Craig fire grew to nearly 700 acres over the course of two days. The NASA SPoRT soil moisture imagery showed the dry area quite well and the fire was located smack dab in the middle of it.

FIgure 3. NASA SPoRT 0-10cm relative soil moisture within south central Socorro County valid 12Z 28 July 2015. The location of the Fort Craig wildfire is indicated by the home identifier.

FIgure 3. NASA SPoRT 0-10cm volumetric soil moisture within Socorro County valid 12Z 28 July 2015. Note the large dry area in near surface soil moisture in response to the recent dry stretch. The location of the Fort Craig wildfire is indicated by the home identifier.

Several storms then impacted the area late on the 28th and the 29th leading to some natural fire suppression and reduction in active fire behavior. The follow-up SPoRT imagery at 12Z 30 July 2015 showed the increase in 0-10cm relative soil moisture over the same area (Fig. 4). The high resolution imagery could be useful in determining fuel dryness for potential fire starts from human activities, cloud to ground lightning ignitions, as well as highlight potential active fire behavior areas. We will continue to assess the possible applications of the SPoRT LIS products as we move through the remainder of the 2015 monsoon season.

Figure 4. NASA SPoRT 0-10cm relative soil moisture within Socorro County valid 12Z 30 July 2015. Note the dramatic increase in near surface soil moisture values in response to the active storm pattern. The location of the wildfire is noted by the home identifier.

Figure 4. NASA SPoRT 0-10cm relative soil moisture within Socorro County valid 12Z 30 July 2015. Note the dramatic increase in near surface soil moisture values in response to the active storm pattern. The location of the Fort Craig wildfire is indicated by the home identifier.

3 thoughts on “Soil Moisture Analysis of Fort Craig Wildfire

  1. Great post Albuquerque! The modeling team at SPoRT has done a lot of work to create the CONUS version of the LIS. More data sets will be coming at some point in the near future, including soil moisture percentiles at various layers (based on 30-year climatology). We are excited to explore new types of applications of the LIS data in your unique environment. And, this is the unique type of application that we won’t generally have here in the Eastern CONUS. I noticed that this area has experienced some degradation in soil moisture over the last three months. Is it possible that this area experienced a good greenup earlier in the year, and then dried out…providing more fuels for the fire? I think a GVF change product could possibly be beneficial for this type of application. Anyway, as always ABQ, thanks so much for your collaboration!

  2. This is an outstanding post!!!

    A great example of the use of the SPoRT-LIS products for situational awareness for wildfire potential in the Western U.S. I am incredibly impressed (but not surprised) that the soil moisture products were able to show the small-scale dry region where the Fort Craig wildfire occurred.

    I am very interested to see if ABQ and its partners are able to use the SPoRT-LIS data in other events like this in a predictive sense to try to anticipate the areas with higher probability of wildfires. For example, after the precipitation on 30 July, there appears to still be a dry area in Northern Sacorro County that might be prone for wildfires.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s