SFR Product Verifies Snow Coverage over Four Corners

The NESDIS Snowfall Rate (SFR) product assessment is in full swing at NWS Albuquerque and forecasters are already capturing some good cases over data sparse regions. The first week of January 2016 was very active across New Mexico as back to back winter storm systems crossed the area. The second system in the series crossed over the Four Corners region on 4 January 2016, producing light to moderate snowfall rates for several hours. The forecaster on shift noted the observation at Farmington, NM (KFMN) indicated light snow with a visibility of 5 statute miles. A quick glance at the SFR procedure used in Figure 1a shows the extent of any precipitation echoes well to the east of KFMN at 0000 UTC 5 January 2016. The nearest radar (KABX, not shown) is located roughly 150 miles southeast of KFMN near Albuquerque, NM. The arrival of a SFR product at 0010 UTC 5 January 2016 showed the extent of the precipitation was much greater with the merged POES image overlaid on the radar data (Figure 1b). Sampled liquid equivalent values in the light green areas to the east of KFMN were near 0.03″/hour.

Figure 1a. Liquid equivalent values of the merged SFR product valid 0000 UTC 5 January 2016. KFMN is denoted by the white circle. Note the extent of the radar coverage is well east of KFMN.

Figure 1b. Liquid equivalent values of the merged SFR product valid 0010 UTC 5 January 2016. KFMN is denoted by the white circle. Note the extent of the snowfall coverage is much greater with the addition of the POES image.

The Terminal Aerodrome Forecast (TAF) issued for KFMN shortly before the receipt of this image indicated temporary fluctuations in the visibility to 1 statute mile with light snow and an overcast ceiling near 1,200 ft between 0000 UTC and 0400 UTC (Instrument Flight Rules, IFR). It is not clear whether any operational changes occurred based on the receipt of the merged SFR product or whether the product increased confidence on the IFR forecast. However, it is entirely possible given the improvement in product latency compared to the 2015 assessment that the imagery could be used in this way.

The webcam available at San Juan College just a short distance from the KFMN observation showed significant decreases in the visibility between 330pm and shortly after sunset (Figure 2a and 2b). The two images below show the decrease in surface visibility as well as notable accumulations on grassy surfaces in front of the college. An observer 3 miles southeast of Farmington did report a total accumulation of 1″ from this event. The merged SFR product did in fact show higher rates immediately to the east of KFMN. The last image in the series shows the impact on travel conditions noted by the NM Department of Transportation web page (Figure 3). The areal coverage of the difficult travel impacts (yellow highlights) was greater than that depicted by what can be seen based on poor radar coverage.

Figure 2a. Webcam at San Juan College around 330pm. Note the light snowfall beginning to develop over the distant mesas behind the college.

Figure 2a. Webcam at San Juan College around 330pm. Note the light snowfall beginning to develop over the distant mesas behind the college.

Figure 2b. Webcam at San Juan College shortly after sunset. Note the dramatic decrease in visibility and light snow accumulations on grassy surfaces in front of the college.

Figure 2b. Webcam at San Juan College shortly after sunset. Note the dramatic decrease in visibility and light snow accumulations on grassy surfaces in front of the college.

Figure 3. Screen capture of NM DOT web page showing areal coverage of difficult travel conditions (yellow highlights) and some text summaries detailing the impacts.

2 thoughts on “SFR Product Verifies Snow Coverage over Four Corners

  1. This is a great example of the added value of the satellite observations used in combination with the radar data and surface observations. I’m very excited to see that the SFR product was able to detect the snow falling in NW New Mexico. And, again, love the use of webcam and DOT for additional ground truth!

  2. Agreed! This is a great example of using a synthesis of informational sources to help out with operational forecasting. Let’s hope the product latency improvement of the polar orbiter swaths allows for easier and quicker decision-making. I’ll be watching with the current eastern snowstorm as well. Thanks again for the post Brian.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s