Cyclone Observed by MODIS Air Mass RGB

MODIS Air Mass RGB (left) and 11 um image (right) from 08 February 2016 at 1427 UTC.

MODIS Air Mass RGB (left) and 11 um image (right) from 08 February 2016 at 1427 UTC.

An image captured this morning by the MODIS Terra instrument shows an impressive cyclone off the eastern coast of the US. The image on the left shows the cyclone in SPoRT’s Air Mass RGB and the image on the right shows the 11.0 µm from Terra (from 8 February 2016 at 1427 UTC). The deep red color on the RGB shows the intrusion of ozone-rich stratospheric air, which is an indication of deformation zones, jet streaks, and potential vorticity anomalies associated with rapid cyclogenesis, which itself indicates strong winds at the surface. This RGB is also limb-corrected for cooling at the edges of the swath, so we can assume the cyclone in this imagery is every bit as intense as it looks.

The new generation of geostationary satellites being deployed globally, such as Himawari, MTG, and GOES-R, will allow us to observe imagery like the Air Mass RGB several times an hour, enabling us to watch the cyclogenesis as it happens.

2 thoughts on “Cyclone Observed by MODIS Air Mass RGB

  1. Excellent post! This is indeed an impressive looking storm, and the Airmass RGB imagery really gives a nice view of the various air mass characteristics that are challenging to determine from analysis of the single-channel imagery alone. What does water vapor imagery look like for a similar time? Many times, the water vapor imagery can detect these dry air features, which also can be indicative of stratospheric air. However, using the multispectral imagery–with contributions from both water vapor and ozone sensitive channels–helps to confirm that the dry air is indeed associated with stratospheric, ozone-rich air related to the cyclogenesis processes described.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s