Stark contrast in Eastern U.S. soil moisture following Hurricane Matthew

Major Hurricane Matthew left a trail of destruction in its wake from the Caribbean up through the U.S. East Coast.  As Hurricane Matthew tracked northward along a large portion of the U.S. Southeast Coast from Florida to North Carolina, the rainfall impacts worsened.  Figure 1 shows the weekly rainfall spanning 4-11 October, ranging from ~2-8 inches along the Florida East Coast to 10-20 inches in the eastern Carolinas.  Since antecedent soil moisture was highest in the eastern Carolinas (Fig. 2), the extreme rainfall led to the most serious flooding in this area.

fig1

Fig. 1.  Weekly rainfall totals from 4 – 11 October 2016.

fig2

Fig. 2.  Total Column (0-2 m) relative soil moisture prior to Hurricane Matthew’s impact on North and South Carolina, valid at 0000 UTC 7 October 2016.

Referring back to the precipitation totals in Fig. 1, we can see that there was a sharp rainfall gradient on the northwestern edge in the Middle Atlantic region.  Interestingly, this gradient in Hurricane Matthew’s rainfall coincided with a pre-existing transition zone between wet conditions near the Atlantic coast and drought conditions further inland from the Appalachians through New England.  The net result was to accentuate the wet-dry contrast already in place.  The animation in Fig. 3 highlights this contrast nicely by presenting the SPoRT-LIS daily total-column relative soil moisture percentiles from 1-12 October.  The percentiles are based off a 1981-2013 daily soil moisture climatology that SPoRT produced from its ~3-km resolution SPoRT-LIS simulation.  By 9 October, notice the incredible transition from excessively wet soil moisture exceeding the 98th percentile (Carolinas through the southern half of Delaware) to extremely dry soil moisture less than the 5th percentile across Pennsylvania into the Northeast (as well as much of the inland Southeastern U.S.).  In fact, total column soil moisture values are less than the 2nd percentile over a large part of Ohio, Pennsylvania, New York, and the New England states, indicative of the ongoing severe drought there.

fig3_loop

Fig. 3. Daily animation of SPoRT-LIS total column relative soil moisture percentile from 1 to 12 October 2016.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s