NASA/SPoRT Providing Real-time Numerical Weather Prediction Guidance for 2018 Winter Olympics

The NASA/SPoRT Center has developed a real-time numerical weather prediction (NWP) configuration that is being provided to forecasters in South Korea in support of the 2018 PyeongChang Olympics and Paralympic games.  The real-time modeling solution is part of a broader initiative known as the International Collaborative Experiment for the PyeongChang Olympics and Paralympic Winter 2018 Games (ICE-POP), which focuses on the measurement, physics, modeling, and prediction of heavy orographic snow in the PyeongChang Region of South Korea from January to March, 2018.  ICE-POP is led by the Korean Meteorological Administration (KMA) as a component of the World Meteorological Organization’s (WMO) World Weather Research Program (WWRP) Research and Development and Forecast Demonstration Projects (RDP/FDP).

The overarching ICE-POP goal is to gain a better understanding of orographic frozen precipitation processes, with the expectation that ICE-POP activities will also improve real-time weather forecasts and KMA-led decision support during the 2018 Winter Olympics. A coordinated array of surface, air and ship-borne meteorological instrumentation, radars, and NWP tools from numerous international partners (including NASA) support the ICE-POP objectives.  NASA’s participation in the ICE-POP RDP/FDP involves Marshall and Goddard Space Flight Centers collaborating as a team on a variety of common forecast and research goals.  The outcome of NASA’s involvement in ICE-POP will be the contribution of observational and modeling data that, as part of the larger ICE-POP dataset, will provide a more comprehensive understanding of orographic snowfall processes — a necessary step for improving and/or developing satellite-based snowfall retrieval algorithms and improved snow microphysics in NWP models.

For the real-time NWP solution as part of the ICE-POP FDP, SPoRT has configured the NASA Unified-Weather Research and Forecasting (NU-WRF) modeling framework to generate 24-hour forecasts four times per day, with initialization times at 0000, 0600, 1200, and 1800 UTC.  The model physics suite features the advanced 4-ice microphysics and short- and long-wave radiation parameterization schemes developed at Goddard Space Flight Center.  The NU-WRF grid setup consists of a triple-nested domain at 9-km, 3-km, and 1-km horizontal spacing, and 62 terrain-following vertical levels, covering regions spanning eastern Asia (9-km grid), the Korean peninsula and surrounding waters (3-km grid), and the eastern Korean peninsula centered on the Olympics venue (1-km grid; Fig. 1).  Initial and (lower) boundary conditions are provided by the NCEP Global Forecast System model and SPoRT’s own 2-km resolution sea surface temperature composite product.

Fig1_icepop_domain

Figure 1. Depiction of the triple-nested grid configuration for the real-time NU-WRF forecast guidance, consisting of 9-km (upper-left), 3-km (right), and 1-km (lower-left) mesh grids.

Model fields are output every 3 hours on the 9-km grid, and every 30 minutes on the 3-km and 1-km grids.  The high-resolution output from the 1-km nest centered on the Olympics venue is being delivered in real time to South Korea forecasters for decision support during the games. SPoRT is sending full grids as well as point forecasts of model fields of interest at each specific game site.  Additionally, numerous graphics of temperature, moisture, winds, precipitation, snowfall, etc. are produced for each grid and hosted to a live model web page, accessible to the public.  The SPoRT/NU-WRF model output along with other models from participating international organizations will provide unique forecast guidance for advanced decision support during the Winter Olympics.  For more information and access to all the SPoRT modeling and remote-sensing products being served for ICE-POP, please link to the SPoRT ICE-POP project page.

Finally, an examination of the SPoRT/NU-WRF model guidance initialized at 1200 UTC 7 February offers a preview of anticipated conditions for the opening ceremony on 8 February.  A weak low pressure is forecast to move southeastward across the Yellow Sea, as indicated by the simulated mean sea level pressure and composite reflectivity from the 3-km grid in Figure 2.  However, this system should not impact the Korean peninsula, so the Olympic venues are forecast to remain free of precipitation.  Temperatures will be seasonably cold, as they are expected to remain below freezing at the venues for the next 24 hours (Fig. 3 animation of forecast 2-meter temperatures on the 1-km nested grid).  Visibility looks good, as it is forecast to remain above 10 km (Fig. 4 animation) with little to no low-level cloud cover being simulated by the 1200 UTC initialization of NU-WRF (not shown).  Enjoy the games and be sure to visit the SPoRT/NU-WRF modeling page often for short-term forecast weather conditions during the 2018 Winter Olympics!

comprefl_d02_2018020712_anim

Figure 2.  Animation of 30-minute mean sea level pressure (hPa), 10-m winds (m/s), and composite reflectivity (dBZ) from the 3-km nested grid of the SPoRT/NU-WRF simulation initialized on 1200 UTC 7 Feb 2018.

tmp2m_d03_2018020712_anim

Figure 3.  Animation of 30-minute 2-m temperatures (deg C) and 10-m winds (m/s) from the 1-km nested grid of the SPoRT/NU-WRF simulation initialized on 1200 UTC 7 Feb 2018.

vis_d03_2018020712_anim

Figure 4.  Animation of 30-minute surface visibility (km) and 10-m winds (m/s) from the 1-km nested grid of the SPoRT/NU-WRF simulation initialized on 1200 UTC 7 Feb 2018.

6 thoughts on “NASA/SPoRT Providing Real-time Numerical Weather Prediction Guidance for 2018 Winter Olympics

  1. Pingback: 7th Warmest Valentine’s Day on Record – Potential Grows for Accumulating Snow on Monday | Paul Douglas

  2. Pingback: The Science Of Winds Affecting The 2018 Winter Olympics In PyeongChang, South Korea – Kopitiam Bot

  3. Pingback: Couple of Slushy Encounters – February To End on Relatively Mild Note | Paul Douglas

  4. Pingback: High Winds Impacting Olympic Events Captured by NASA/SPoRT Model and Satellite Products – The Wide World of SPoRT

  5. Pingback: Just how cold is at at the Winter Olympics in Pyeongchang? | Watts Up With That?

  6. Pingback: Just how cold is at at the Winter Olympics in Pyeongchang? |

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s