A Decade Review of SPoRT

Written by Emily Berndt and Jordan Bell

SPoRT was established in 2002 to transition NASA satellite data and capabilities to improve short-term weather forecasting with an emphasis on National Weather Service (NWS) end users. With the goal of maximizing the benefit of NASA research and capabilities to benefit society, SPoRT has developed innovative solutions to bring research products to operations and tailor them to meet end user needs. Over the past decade SPoRT has been at the forefront of a range of activities, making notable contributions to NASA LIS and WRF Hydro, the GOES-R/JPSS Proving Grounds, and the GPM, SMAP, and SWOT Early Adopter Programs. With an initial focus on partners in the southeastern U.S., SPoRT has expanded partnerships to include end users in all NWS Regions, National Centers, and other government agencies such as the U.S. Forest Service, U.S.D.A., and state environmental agencies. Over the decade SPoRT has consistently used a research to operations/operations to research paradigm to interact with end users, involving them in the process of product development, tailored training, and product assessment/feedback. This process has even led to algorithm improvements within GPM IMERG and the NESDIS Snowfall Rate to accelerate operational use of research products.  Interaction with end users has even led to the pursuit of research projects such as limb correction to improve RGB imagery and interpretation or developing a methodology to correct land surface model data with satellite soil moisture. In order to introduce experimental products into the fast-paced operational environment SPoRT developed applications-based training concepts such as the Quick Guide that has been shared with and adopted by others in the community. Also notable- early activities within SPoRT to leverage NASA data for disaster response, led to a bigger presence in and significant contributions to the NASA Disasters Program. Below is a review of notable publications, blog posts and tweets over the past decade:

— 2010 —

Notable Publication

Utilizing Total Lightning Information to Diagnose Convective Trends

Top Blog Post

Experimental MODIS RGB Color Composites of Hurricane Earl

— 2011 —

Notable Publication

NASA satellite data assist in tornado damage assessments

Top Blog Post

Analyzing MODIS Imagery of North Alabama Tornado Tracks

Top Tweets

— 2012 —

Notable Publications

The GOES-R Proving Ground: Accelerating User Readiness for the Next-Generation Geostationary Environmental Satellite System

Diagnosis of a dense fog event using MODIS and high resolution GOES satellite products with direct model output

Top Blog Post

Dust Storm in the Plains Captured well in MODIS Dust RGB Imagery

Top Tweets

— 2013 —

Notable Publications

Transitioning research satellite data to the operational weather community: The SPoRT Paradigm

Transitioning research to operations: Transforming the “valley of death” into a “valley of opportunity

The emergence of weather-related test beds linking research and forecasting operations

The GOES-R Geostationary Lightning Mapper (GLM) 

Application of next-generation satellite data to a high-resolution, real-time land surface model

Multispectral imagery for detecting stratospheric air intrusions associated with mid-latitude cyclones

Top Blog Post

Long flash observed by the Colorado Lightning Mapping Array

Top Tweets

— 2014 —

Notable Publications

A Real-Time MODIS Vegetation Product for Land Surface and Numerical Weather Prediction Models 

Total lightning observations and tools for the 20 May 2013 Moore, Oklahoma, tornadic supercell

Satellite-based identification of tornado damage tracks from the 27 April 2011 severe weather outbreak 

Top Blog Post

VIIRS Day Night Band (DNB) RGB Imagery Assisted by Nighttime-Microphysics RGB

Top Tweets

— 2015 —

Notable Publications

Development and Application of Atmospheric Infrared Sounder Ozone Retrieval Products for Operational Meteorology

Satellite tools to monitor and predict Hurricane Sandy (2012): Current and emerging products

Transitioning NASA and NOAA Satellite Products, Modeling & Data Assimilation Techniques, and Nowcasting Tools to Operations

Demonstration of a GOES-R Satellite Convective Toolkit to “Bridge the Gap” between Severe Weather Watches and Warnings: An Example from the 20 May 2013 Moore, Oklahoma, Tornado Outbreak

Top Blog Post

From Drought To Flooding In Less Than A Week Over The Carolinas As Depicted By SPoRT LIS

Top Tweets

— 2016 —

Notable Publications

Assimilation of SMOS Retrievals in the Land Information System

Limb correction of MODIS and VIIRS infrared channels for the improved interpretation of RGB composites

Next Generation Satellite RGB Dust Imagery Demonstration Leads to Changes in Communication and Services by NWS Albuquerque Forecast Office

From drought to flash flooding in less than a week over South Carolina

The operational use and assessment of a layered precipitable water product for weather forecasting

Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

Top Blog Post

Precip Estimates offshore using NASA IMERG

Top Tweets

— 2017 —

Notable Publications

Transforming satellite data into weather forecasts

Lightning decision support using VHF total lightning mapping and NLDN cloud-to-ground data in North Alabama 

Top Blog Post

Category 5 Hurricane Irma as Observed by the GOES 16 GLM

irma_cat5_1minGLM_05sep17-190

 Top Tweets

— 2018 —

Notable Publications

A Methodology to Determine Recipe Adjustments for Multispectral Composites Derived from Next-Generation Advanced Satellite Imagers

Utility of CrIS/ATMS profiles to diagnose extratropical transition

Correction of Forcing-Related Spatial Artifacts in a Land Surface Model by Satellite Soil Moisture Data Assimilation

Evolution of 2016 drought in the southeastern United States from a land surface modeling perspective

Snowfall rates from satellite data help weather forecasters

Impact of dust aerosols on precipitation associated with atmospheric rivers using WRF-Chem simulations

Characteristics of Lightning Within Electrified Snowfall Events Using Lightning Mapping Arrays 

Top Blog Post

Plenty of fresh Powder for Paralympic Winter Games in-Pyeongchang Three Snowstorms in Eight Days

Top Tweets

— 2019 —

Notable Publications

Incorporation and Use of Earth Remote Sensing Imagery within the NOAA/NWS Damage Assessment Toolkit

Geostationary Lightning Mapper Flash Characteristics of Electrified Snowfall Events

Limb Correction of Geostationary Infrared Imagery in Clear and Cloudy Regions to Improve Interpretation of RGB Composites for Real-Time Applications

Addressing the Cold Air Aloft Aviation Challenge with Satellite Sounding Observations

Gulf of Alaska cyclone in daytime microphysics RGB imagery

Development and Evaluation of the GLM Stoplight Product for Lightning Safety

Spatial, Temporal and Electrical Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events 

Top Blog Posts

GLM Sees Apparent Meteor Flash in Western Cuba

Normalized Burn Ratio (NBR) Imagery in AWIPS

Top Tweets

Into the next decade

During the past decade SPoRT has made notable contributions to bridge the valley of death to transition research to operations and maximize the benefit of NASA and NOAA remote sensing observations for the benefit of society.  SPoRT has conducted a range of research in key areas including modeling and satellite data assimilation, remote sensing, and lightning.  In addition, SPoRT has partnered with other researchers, product/algorithm developers, and end users to assess products in the operational environment, create training, and assess their utility.  The team has observed research capabilities transform into operational products as a result of end user interaction and many of those examples are highlighted above! Into the next decade SPoRT will continue to foster interaction between research and operations as well as conduct research in focus areas that include lighting, synoptic/mesoscale meteorology, tropical meteorology, land surface modeling, health/air quality, and hazards.  SPoRT has already begun engaging in new NASA missions such as TEMPO and TROPICS that will bring unprecedented observations to benefit science and applications.  In addition, SPoRT is using their expertise in transition of research to operations to anticipate applications of future missions by actively participating in the NASA Decadal Survey Designated Observable studies.  We look forward to continuing to bridge the gap between research and operations, bringing new NASA capabilities to end users, in the new decade ahead! Thank you to all the SPoRT team members,  collaborators, and end users who have contributed to many of the projects described above.