Hurricane Florence to Impact the Carolinas with Massive Rainfall

All eyes are on North and South Carolina as Major Hurricane Florence approaches the region over the next two days.  One important component to the official forecast is for the storm to slow down as it approaches the coast, due to the collapse of major atmospheric steering currents.  As a result, the NCEP Weather Prediction Center is predicting extreme rainfall amounts, especially for southeastern coastal North Carolina where 15-20”+ of rainfall is anticipated over the next 7 days (Fig. 1).

Fig1_WPCQPF_HurricaneFlorence_20180912

Figure 1.  NCEP Weather Prediction Center 7-day rainfall forecast, valid for the period 1200 UTC 12 September through 1200 UTC 19 September 2018. [Click image for full view]

An examination of the antecedent soil moisture is helpful to qualitatively assess the ability of the ground to absorb some of the moisture from the incoming rainfall.  Figure 2 shows a collage of shallow to deep soil moisture percentiles from 12 September within the four layers of the Noah land surface model, as being run in real time within NASA SPoRT’s configuration of the Land Information System (i.e., “SPoRT-LIS”).  The percentiles are derived from a 1981-2013 database of SPoRT-LIS daily soil moisture values in order to compare the present-day soil moisture to historical values on any given day of the year.  In Fig. 2, we see that recent soil moisture values are historically quite dry over central/northern South Carolina and into far southern North Carolina, with values under the 10th percentile (and even 2nd percentile, yellow/red shades) in some areas.  Meanwhile, as one traverses inland and northward, the soils steadily moisten to anomalously wet conditions (green/blue shades), especially over interior North/South Carolina to the Appalachian Mountains.

Fig2_SPoRT-LIS-soilMoisturePercentiles

Figure 2.  SPoRT-LIS soil moisture percentiles on 12 September 2018, relative to 1981-2013 daily climatological values for the following layers: (a) 0-10 cm (top model layer), (b) 0-40 cm (top two model layers), (c) 0-100 cm (top three model layers), and (d) 0-200 cm (all four model layers). [Click image for full view]

The dry soil moisture anomalies near the coast suggest that the soils will initially be able to absorb incoming rainfall fairly effectively.  However, as prolonged heavy rainfall continues with the expected slow movement of Hurricane Florence, the soils should quickly become saturated, thereby leading to enhanced runoff and flooding potential over time.  So while having dry soils will be of some help early in the event, a prolonged exceptional rainfall up to 20”+ will lead to substantial flooding regardless of the initial soil moisture distribution.

The blog author documented a similar scenario (also over South Carolina), where substantial moisture from Hurricane Joaquin in Autumn 2015 led to 20”+ rainfall totals, largely occurring over dry soils in an area of moderate to severe drought, thereby completely eliminating the drought classification in South Carolina and producing substantial flooding.  A similar scenario was also seen associated with Hurricane Harvey in southeastern Texas last year, where very dry soils were prevalent prior to Harvey’s landfall north and west of Houston Metro.  However, given the very prolonged exceptional rainfall event, incredible soil moistening and flooding occurred anyway in much of southeastern Texas.

 

Wet streaks in soil moisture observed in west Texas…

This morning I observed some rather odd looking streaks in the 10.3 µm imagery in western portions of Texas.  Sampling the 10.3 µm data revealed alternating areas of relative warm/cool skin surface temperatures in the cloud free conditions in the area on the upstream side of departing deep convection.  The temperature difference in the skin temperatures were around 5 C at this time.  The 10.3 µm image below was taken from appox. 1357 UTC this morning (3 May 2018).

Image 1.  10.3 um imagery from GOES-16, 1357 UTC 3 May 2018

Arguably, the streaks of lower temperature values showed up better in the 3.9 µm imagery.  Notice the streaks or alternating bands of yellow/orange colors in portions of west Texas.

Image 2.  3.9 um imagery from GOES-16, 1357 UTC 3 May 2018

Realizing these temperature differences were likely due to the recent convective rainfall, I looked up the SPoRT LIS 0-10 cm volumetric soil moisture data, which corresponded nearly perfectly with the streaks of relative lower temperature values (Image 3).  So indeed, this was due to the recent heavy, convective rainfall across the area.

Image 3.  SPoRT LIS 0-10 cm Volumetric Soil Moisture, 15 UTC 3 May 2018

 

Extreme Wildfire Setup over Southern High Plains for 17 April

The fire weather outlook for today (17 April 2018) looks very dire over the Southern High Plains of western Texas, New Mexico, and portions of western Oklahoma, southwestern Kansas, and southeastern Colorado. The combination of very little precipitation in recent months along with expected strong winds and extremely low relative humidities will set the stage for potentially dangerous wildfires over this region. The NCEP Storm Prediction Center has the highest threat category in today’s fire weather outlook across the region, with a large swath of extremely critical fire weather conditions expected (Fig. 1).

The persistent lack of precipitation over the Southern High Plains and Desert Southwest regions and its impact on deep-layer soil moisture is captured by the SPoRT-LIS 6-month change in total column relative soil moisture, as posted on the SPoRT-LIS graphics web page (Fig. 2; https://weather.msfc.nasa.gov/sport/case_studies/lis_CONUS.html).  A sharp transition lies across Kansas, Oklahoma and Texas, where a strong drying signal is seen across western portions of these states into New Mexico, Arizona, and Mexico, whereas dramatic moistening is prevalent in the last 6 months over the Mississippi, Ohio, and Tennessee River Valleys.  Substantial drying is also noted over the southern Florida Peninsula, with wetting seen over the West Coast and Pacific Northwest (Fig. 2).

Since the unusual and persistent dry pattern over the Southern Plains and Desert Southwest has occurred during the winter months when vegetation is typically dormant (which taps into the deeper soil moisture layers), the anomalously dry conditions are best captured by soil moisture percentiles in the near-surface layer of the SPoRT-LIS.  The total column SPoRT-LIS soil moisture percentiles does not depict an overly dramatic anomaly over the Desert Southwest (Fig. 3; unusual dryness is most prevalent in the deep layers from Oklahoma/Kansas up to Wisconsin/Illinois); however, the shallow soil moisture percentiles capture the anomalous drying over these regions near the surface, as seen in the animation of daily 0-10 cm percentiles for April  in Fig. 4, especially over West Texas, New Mexico and Arizona.  Medium-range forecasts suggest there could be precipitation over the Southern High Plains this weekend, but numerous wetting events will be needed to relieve the ongoing drought conditions.

Figure 1. NCEP Storm Prediction Center’s Day-1 fire weather outlook map for 17 April 2018.

Figure 2. Six-month change in SPoRT-LIS total column relative soil moisture for the period ending 16 April 2018.

Figure 3. SPoRT-LIS total column relative soil moisture percentiles, valid for 16 April 2018.

Figure 4. Daily animation of top-layer (0-10 cm) SPoRT-LIS soil moisture percentiles for the period 1 April to 16 April 2018.

Assimilation of NASA Soil Moisture Active Passive (SMAP) Retrievals to Improve Modeled Soil Moisture Estimates and Short-term Forecasts

For several years, SPoRT has been running a real-time simulation of the NASA Land Information System (hereafter, “SPoRT-LIS“), over a Continental U.S. domain at a ~3-km spatial resolution.  The SPoRT-LIS product is a Noah land surface model climatological and real-time simulation over 4 model soil layers (0-10, 10-40, 40-100, and 100-200 cm). For real-time output, the Noah simulation is updated four times per day as an extension of the long-term climatology simulation.  It ingests NOAA/NESDIS daily global VIIRS Green Vegetation Fraction data, and the real-time SPoRT-LIS component also incorporates quantitative precipitation estimates (QPE) from the Multi-Radar Multi-Sensor (MRMS) gauge-corrected radar product.  The long-term, climatological SPoRT-LIS is based exclusively on atmospheric analysis input from the NOAA/NASA North American Land Data Assimilation System – version 2.

Over the last 1-2 years, SPoRT has been conducting applied research to improve its SPoRT-LIS analyses by assimilating Level 2, enhanced-resolution soil moisture retrievals from the NASA Soil Moisture Active Passive (SMAP) mission.  Comparisons between the “SMAP-LIS” (assimilating the SMAP soil moisture retrievals) and the current SPoRT-LIS (without data assimilation) are available in a near real-time research page.  Data assimilation experiments are being conducted over both Continental U.S. and East Africa domains, and the utility of SMAP data assimilation over Alaska during the warm season is being explored as well.  Besides producing more accurate soil moisture estimates, the project also seeks to improve short-term numerical weather prediction (NWP) models by comparing model runs initialized with SPoRT-LIS enhanced with SMAP data assimilation against model runs initialized with the current SPoRT-LIS soil moisture fields.  This blog post provides a status of this ongoing research, highlighting recently-published work and preliminary NWP model results.

Improvements to Modeled Soil Moisture Estimates

[The data assimilation discussion below represents an excerpt from Blankenship et al. 2018]

To reduce model forecast error in a land surface or atmospheric model, it is essential to periodically update model states with independent observations (Fig. 1).  Data assimilation methods are used to combine an existing model state (background) with a set of observations in order to produce a new model analysis.  The SMAP-LIS uses an Ensemble Kalman Filter to combine SMAP observations with the modeling capabilities of the previous SPoRT-LIS, with the goal of improving states of soil moisture , soil temperature, and fluxes of moisture and energy at the land surface.

Fig1_DA-concept

Figure 1.  Conceptual diagram of data assimilation (DA).  The black curve represents the true state of some model variable over time at a single point.  The red curve represents a forecast unconstrained by observations and whose error grows with time.  With data assimilation, the observations (blue diamonds) are used to adjust the model value at each assimilation cycle (gray arrows), producing a new forecast (purple curve) that is closer to reality.

An important step in data assimilation is to perform a bias correction to adjust the observations to match a known model distribution.  This is desirable because the solution for the new model analysis makes the assumption that the model and observation are unbiased relative to each other.  The choice of the temporal and spatial scales for this correction are somewhat subjective.  If the initial model climatology has biases built in, e.g., a systematic wet bias or a regionally-varying bias, a strict correction to the model climatology will maintain the model’s previous bias.  Since we seek to take advantage of the global consistency of SMAP observations, we have implemented a non-local bias correction by aggregating points to generate a location-independent correction curve for each soil type (since many modeling errors are related to soil type).  Figure 2 shows the resulting correction curves for 8 broad soil-type categories.

An advantage of applying the weaker non-local constraint when performing the bias correction is that it allows SMAP to influence the climatology of the soil moisture.  We have identified some geographic model biases in our existing SPoRT LIS run, forced by NLDAS-2 analyses.  One example involves the blending of disparate US and Canadian precipitation observations in the Great Lakes region.  This blending produced a persistent dry anomaly in the southern Ontario region (between Lakes Superior, Erie, and Ontario) in the SPoRT-LIS.  This is seen in Fig. 3a, which shows the monthly average 0-100 cm soil moisture for June 2016.  The SMAP retrievals (A single overpass is shown in Fig. 3c.), while relatively dry in this region, are more consistent with nearby areas in Michigan and the northern parts of Indiana and Ohio.  (Note that the color scale is different since this figure represents the top 5 cm only.)  As the result of repeated data assimilation, the SMAP-LIS soil moistures (Fig. 3b) in Southern Ontario over the 0-100 cm layer are more consistent with those in neighboring regions to the south and west.  This example illustrates how the non-local bias correction can help correct spatially varying errors in the model soil moisture.

A quantitative validation (Table 1) was performed against a soil moisture gauge at Elora, Ontario (depicted by the star in Fig. 3c) for two summers.  Results show that the SMAP-LIS soil moistures were more accurate in terms of bias and RMSE for 2015 and 2016.  Results for unbiased RMSE, correlations, and anomaly correlations were mixed from year to year but all three metrics performed better in the second year of the experiment.

Fig2_SM-bias-correction

Figure 2. Bias correction curves for 8 soil type groupings used to convert SMAP retrievals to model-equivalent values.

Fig3_SMAPDA-differences-SEcanada

Figure 3. Long-term impact of SMAP data assimilation on root zone soil moisture. (a) Average of 1200 UTC 0-100 cm relative soil moisture (%) for June 2016 from SPoRT-LIS (no data assimilation), (b) Same quantity but for SMAP-LIS, (c) SMAP retrieved soil moisture on 4 June 2016. (m3 m-3 x100).  The star shows the location of a soil moisture gauge used for validation. (Click on image for full size view)

TABLE 1. Validation statistics (bias, RMSE, unbiased RMSE, correlation, anomaly correlation) from Elora, Ontario, Canada soil moisture gauge for summer 2015 (30 May-4 Sep) and summer 2016 (2 May-31 Aug).  For each pair of measurements, the better value is in bold type.

2015

2016

Metric SPoRT-LIS SMAP DA SPoRT-LIS SMAP DA
Bias -0.096 -0.077 -0.083 -0.043
RMSE 0.102 0.088 0.115 0.086
ubRMSE 0.036 0.042 0.079 0.075
RCORR 0.76 0.69 0.38 0.48
ACORR 0.77 0.67 0.55 0.57

Impacts on Short-term NWP Model Forecasts

The second component of this research involves compared NWP model simulations initialized with SPoRT-LIS and SMAP-Enhanced DA fields, using the NASA Unified-Weather Research and Forecasting (NU-WRF) modeling framework for the experiments.  NU-WRF simulations are currently focused on the CONUS during the warm season (May to August) to document impacts of SMAP data assimilation on short-term regional NWP.  A case study of improved timing of a mesoscale convective system (MCS) is highlighted here.  Ongoing work involves examining other high-impact convective cases during the 2015 and 2016 warm seasons, and conducting comprehensive model verification statistics.

The case highlighted here is from a severe MCS over the Midwest from 13-14 July 2016.  The NCEP/Storm Prediction Center reports from this day are available at http://www.spc.noaa.gov/climo/reports/160713_rpts.html. An MCS developed over Missouri and Illinois during the afternoon of 13 July, and quickly moved eastward into Indiana, Michigan, and Ohio and southern Ontario province into the evening.  The initial surface soil moisture differences between the SMAP-LIS and SPoRT-LIS (Fig. 4) show that a distinct drying occurred in the data assimilation output over the Midwest, compared to the SPoRT-LIS output.  Meanwhile, a moistening occurred from SMAP DA over portions of Southern Ontario, as illustrated above.  (Note that the moist “stripe” surrounding the Great Lakes is consistent with the appearance of a moist bias near coastlines found within the SMAP Enhanced Resolution Level 2 product).  A similar signal is seen in the deeper soil layers as well.

Fig4_SM1diff

Figure 4.  Difference in initial 0-10 cm volumetric soil moisture between SMAP-LIS and SPoRT-LIS for the model runs initialized at 0000 UTC 13 July 2016.

The soil drying signal over the Midwest led to a corresponding increase in 2-m temperatures, decrease in 2-m dew points, and overall decrease in surface convective available potential energy (CAPE), as seen in the NU-WRF 18-h forecast (Fig. 5).  Meanwhile, over southern Ontario, the more moist soils in the SMAP-LIS initialized run led to an opposite response.  These changes to the simulated boundary layer environment led to an overall faster propagation of the MCS across Illinois and Indiana in the SMAP-LIS initialized NU-WRF runs, as highlighted in Fig. 6.  This faster solution was in better agreement with the observed radar reflectivity at 0000 UTC 14 July, as the NU-WRF run initialized with SPoRT-LIS data had too slow of a solution at this time.  While the two solutions converged to a slow-biased placement and timing after dark, secondary development over Southern Ontario was more aggressive in the SMAP-LIS initialized run, again in better agreement with reality (Fig. 7).  More comprehensive analysis and model verification will help us better understand the cause and effect relationship between the soil moisture initialization and the resulting NU-WRF simulation differences for this case, as well as composite results during the 2015 and 2016 warm seasons.

Fig5_T-Td-CAPEdiff

Figure 5.  Differences in NU-WRF simulated 2-m temperature (left panel; SMAP-Enhanced minus SPoRT-LIS), surface CAPE (middle), and 2-m dew point (right) for the 18-h forecast valid 1800 UTC 13 July 2016.  (Click on image for full size view)

Fig6_refl24h

Figure 6.  Comparison of NU-WRF simulated composite radar reflectivity for the (a) SPoRT-LIS initialized run, (c) SMAP-LIS initialized run, and (b) validating radar reflectivity observation, for the 24-h forecast valid 0000 UTC 14 July 2016. (click on image for full size view)

Fig7_refl28h

Figure 7.  Same as in Fig. 6, except for the 28-h forecast valid 0400 UTC 14 July 2016. (click on image for full size view)

Continue reading

Comparison of Soil Moisture Response in Hurricanes Harvey and Irma

Comparison of Soil Moisture Response in Hurricanes Harvey and Irma

After a record [nearly] 12 years between landfalling major hurricanes [cat 3 or higher], the United States has now experienced two major hurricanes making landfall less than three weeks apart from one another.  Hurricane Harvey brought exceptional record rainfall to southeastern Texas and southwestern Louisiana because it stalled shortly after landfall due to a lack of atmospheric steering currents.  Less than 3 weeks later, Major Hurricane Irma made landfall twice in Florida: once in the Lower Keys and again near Marco Island on the southwestern coast.  A long-lived cat 5 hurricane prior to landfall, Irma had a very large wind field which resulted in far-reaching impacts along the Florida East Coast, up to Charleston, SC, and inland to Atlanta, GA, with millions of households and businesses without electricity and/or water.

Here at the NASA SPoRT Center, we have been closely monitoring these two hurricanes through numerous social media and blog posts of unique satellite products and through SPoRT’s real-time instance of the NASA Land Information System (“SPoRT-LIS”).  This blog post serves to compare the soil moisture responses to hurricanes Irma and Harvey rainfall, as depicted by the real-time SPoRT-LIS output.  The Relative Soil Moisture (RSM) variable is shown throughout this article, since it takes into account the variations in soil composition by scaling the moisture availability between the wilting point (plants cannot uptake moisture) and saturation point (soil cannot hold any more water).  The SPoRT-LIS runs the Noah land surface model, which estimates soil moisture through 4 layers: 0-10, 10-40, 40-100, and 100-200 cm depth.  We first examine the response during Irma in the top 0-10 cm layer, followed by 0-100 cm layer for both storms, and then compare the total column (0-200 cm) values relative to historical values from a climatological database spanning 1981-2013 (33 years).

Figure 1 compares the weekly rainfall accumulation primarily from Hurricane Irma over the Southeastern U.S. to the August monthly rainfall total over Texas/Louisiana, primarily contributed from Hurricane Harvey during the final week of August. Rainfall from Irma was quite substantial in the Florida peninsula up to coastal South Carolina, where numerous locations measured over 10″ of rain in less than 2 days. Rainfall of 3-5″ extended inland to northern Georgia and central South Carolina, with lesser amounts generally below 3″ across eastern and northern Alabama (Fig 1, left panel).  The highest totals were along the southwestern and eastern Florida coasts.  This rainfall still pales in comparison to the widespread 20″+ that fell across a huge part of southeastern Texas and western Louisiana, albeit over a 5-6 day span.  Highest totals exceeded 50″ near Beaumont/Port Arthur, TX!

PrecipComparison

Fig 1.  Comparison of weekly rainfall estimate associated with Hurricane Irma (left), and August monthly rainfall estimate associated with Hurricane Harvey (right).

The 0-10 cm RSM animation in Fig 2 for hurricane Irma shows how quickly the top soil layer responds to incoming rainfall within the Noah land surface model in SPoRT-LIS.  The heavy rainfall rates up to 4″ per hour or more led to a quick saturation during 10 September across the Florida peninsula, eventually extending up to coastal Georgia and South Carolina on the 11th.  Similarly, as rainfall ends we can see the 0-10 cm RSM quickly decrease from south to north as the moisture infiltrates into deeper model layers and/or evaporates back to the atmosphere.  We also see that the top soil layer does not completely saturate across interior Georgia and Alabama, likely due to lower rain rates, drier initial soils, and different soil composition compared to the fast-responding sandy soils across Florida.

rsoim0-10_hurricaneIrma_10-12Sep_anim

Fig 2.  Hourly animation of SPoRT-LIS 0-10 cm relative soil moisture (RSM) and Multi Radar Multi Sensor (MRMS) quantitative precipitation estimates (QPE) from 0000 UTC 10 September through 1200 UTC 12 September 2017, associated with Hurricane Irma.

Meanwhile, the RSM averaged over the top 3 layers (0-100 cm; Fig 3) takes a longer time to moisten up during the heavy rainfall of Irma. We do see values approaching saturation across southwestern, central, and particularly northeastern Florida near the end of the rainfall event as the deeper soils have had an opportunity to recharge.

Over southeastern Texas and Louisiana (Fig 4), the 0-100 cm RSM animation shows how the prolonged, training heavy rainfall led to near saturation of the top meter of the Noah model, despite dry antecedent conditions (especially west of the Houston metro, where the RSM transitioned from less than 10% to nearly saturation!).  The much longer rainfall duration with hurricane Harvey led to sustained higher values of soil moisture in the top one meter.

rsoim0-100_hurricaneIrma_10-12Sep_anim

Fig 3.  Hourly animation of SPoRT-LIS 0-100 cm RSM and MRMS QPE from 10-12 September 2017, associated with Hurricane Irma.

rsoim0-100_hurricaneHarvey_25-30aug_anim

Fig 4.  Hourly animation of SPoRT-LIS 0-100 cm RSM and MRMS QPE from 25-30 August 2017, associated with Hurricane Harvey.

Finally, the total column 0-200 cm layer can require months or years to respond to rainfall events (or lack thereof), depending on the soil composition.  However, with major rainfall events like hurricanes Harvey and Irma, the total column RSM does respond dramatically and subsequently can depict substantial wet anomalies.  To that end, the SPoRT-LIS has a daily, county-based climatological database of modeled soil moisture from 1981-2013 from which current conditions can be compared to depict anomalies via percentiles relative to the 33-year distribution.  Fig 5 shows these percentiles color-coded to depict dry anomalies (less then 30th percentile) or wet anomalies (greater than 70th percentile) according to the scales beneath the figure.

Following hurricane Irma, we see that portions of southwestern and northeastern Florida have 0-200 cm RSM greater than the 98th percentile, as well as parts of west-central Georgia (Fig 5; left panel).  In general, the extreme wet percentiles are fairly spotty across the domain.  However, following hurricane Harvey (Fig 5; right panel), the 0-200 cm RSM percentiles are “off the charts” high, with dozens of counties experiencing soil moisture exceeding the [33-year] historical 98th percentile.  In fact, the soil moisture was SO anomalously moist following hurricane Harvey that the average daily value across all of Jefferson County, TX (Beaumont/Port Arthur) exceeded all values in the entire 33-year database by the end of August!  This unusual condition is highlighted in Fig 6, which shows a daily animation of historical 0-200 cm RSM histograms for Jefferson County, TX, with the current 2017 county-averaged values in the vertical dashed line.  We see that by the end of hurricane Harvey, the vertical dashed line is well above any values from the 33-year historical distribution, thereby quantifying how exceptionally unusual this rainfall event was in southeastern Texas.

PercentileComparison

Fig 5.  SPoRT-LIS 0-200 cm RSM percentile, valid at 1200 UTC on 12 September 2017 (post-Irma; left), and 30 August 2017 (post-Harvey; right).

Jefferson_County_TX_30day_realtimeLoop

Fig 6. Animation of daily distributions of 0-200 cm RSM for all SPoRT-LIS grid points residing in Jefferson County, TX (Beaumont/Port Arthur) during the month of August 2017.  Gray bars are the frequencies of 0-200 cm RSM from the 33-year SPoRT-LIS climatology; colored vertical lines are reference percentiles according to the legend in the upper right; and the bold vertical dashed line is the county-averaged value for the present day in August 2017.

Soil Moisture Conditions over Southeast Texas Prior to Hurricane Harvey

Soil Moisture Conditions over Southeast Texas Prior to Hurricane Harvey

As much-anticipated Hurricane Harvey approaches the southern and eastern coast of Texas today, it is worth examining the pre-existing soil moisture over the region to understand the capacity of the land surface to absorb the upcoming rainfall.  Granted, the amount of rainfall simulated by numerical guidance is off-the-charts high (e.g., today’s 0600 UTC initialized NAM model [Fig. 1] shows 84-hour maximum accumulated rainfall of over 60″ between Corpus Christie and Houston!!).  Thus, extreme flooding is anticipated, regardless of the amount that can be absorbed by the soils.

Fig1_NAMFLT_prec_precacc_084

Figure 1.  The NCEP/NAM model 84-hour forecast of total accumulated precipitation (inches) over Southeastern Texas, from the simulation initialized at 0600 UTC 25 August 2017 [image courtesy of College of DuPage forecast page].

SPoRT manages a real-time simulation of the NASA Land Information System (hereafter, “SPoRT-LIS“), running over the Continental U.S. at ~3-km grid resolution.  The SPoRT-LIS product is a Noah land surface model climatological and real-time simulation over 4 model soil layers (0-10, 10-40, 40-100, and 100-200 cm).  The climatological simulation spans 1981-2013 and forms the basis for daily-updated total-column soil moisture percentiles (forthcoming in Fig. 3), in order to place current soil moisture values into historical context.  For real-time output, the Noah simulation is regularly updated four times per day as an extension of the long-term climatology simulation.  It includes NOAA/NESDIS daily global VIIRS Green Vegetation Fraction data, and the real-time SPoRT-LIS component also incorporates quantitative precipitation estimates (QPE) from the Multi-Radar Multi-Sensor (MRMS) gauge-corrected radar product.  The climatological SPoRT-LIS is based exclusively on atmospheric analysis input from the NOAA/NASA North American Land Data Assimilation System – version 2.

Relative Soil Moisture output from the SPoRT-LIS over the 0-100 cm layer is shown in Fig. 2 over Southeastern Texas and Louisiana at 1200 UTC this morning.  A marked gradient between very dry soils to the west and moist soils to the east occurs in the vicinity of the greater Houston metropolitan area.  The soils in the region bounded by Corpus Christi, San Antonio, Austin, and Houston (areas forecast to have the greatest rainfall from Hurricane Harvey) are extremely dry prior to Harvey’s landfall.  This dryness will help to some extent in absorbing the initial rainfall from Hurricane Harvey.  But with such excessive rainfall being forecast over a prolonged time period (3-5+ days), it won’t be long before the upper portions of the soil column saturates and widespread areal flooding occurs.  In addition, the high forecast rainfall rates could easily result in flash flooding (despite prevailing soil dryness), especially further inland where terrain plays a more important role in runoff and flash flooding.

The total column relative soil moisture percentile from 24 August shows that historically-speaking, the soil moisture is slightly drier than normal, particularly along the coastal plain between Corpus Christi and Houston (Fig. 3).  In this corridor, the soil moisture is generally between the 10th and 30th percentile compared to the 1981-2013 climatological distribution for 24 August.

Fig2_rsoim0-100_20170825_12z_tx_cityLabels

Figure 2.  SPoRT-LIS relative soil moisture (RSM) distribution in the 0-1 meter layer across Southeastern Texas and Louisiana, valid 1200 UTC 25 August 2017.  RSM values of 0% represent wilting (vegetation cannot extract moisture from soil) and 100% represents saturation (subsequent rainfall becomes runoff).

Fig3_rsm02percent_20170824_12z_tx

Figure 3.  Total column (0-2 m) relative soil moisture percentile valid 24 Aug 2017, as compared to all 24 August soil moisture values from a 33-year climatological simulation of the SPoRT-LIS.

Finally, an hourly animation of the 1-day changes in 0-10 cm (top model layer) relative soil moisture show that the near-surface soils are quickly moistening between Corpus Christi and Houston, as the initial rainbands of Hurricane Harvey began impacting the coastal plain this morning.  As the soils continue to moisten rapidly from the top-down, subsequent rainfall will quickly lead to runoff and flooding.

Fig4_rsoim0-10diff1_20170825_anim

Figure 4.  Hourly animation of 1-day change in top-layer (0-10 cm) relative soil moisture, for the time period spanning 0000-1400 UTC 25 August 2017.  Each hourly image is a simple difference in 0-10 cm relative soil moisture between the current and previous day at the same valid hour.  Line contours depict one-hour QPE from the MRMS product, as input to the real-time SPoRT-LIS.

Multiple Atmospheric Rivers Impact California in Early 2017

The state of California has been suffering from a multi-year drought that has severely depleted water resources and reservoir levels. Recent winters have failed to produce precipitation and mountain snows to replenish the losses during the dry summers. However, the situation has rapidly changed this winter, particularly in the past week when multiple atmospheric rivers have impacted the state.

An atmospheric river is a concentrated channel of deep moisture that is transported from the tropical Pacific Oceanic regions to the West Coast of the United States.  These events are often associated with prodigious amounts of rainfall and mountain snows that lead to flooding, mudslides, and avalanches.  We have seen such events this past week impact California, especially the central and northern parts of the state.  CIRA’s total precipitable water product in Figures 1a and 1b depict two separate atmospheric rivers impinging on central California from 8 and 10 January 2017, respectively. The first wave transported a plume of tropical moisture from the south-southwest, which led to massive rainfall and high snow levels.  The second atmospheric river on the 10th was less directly connected to the tropics (coming in from the west-southwest), but nonetheless exhibited a well-focused transport of high moisture content.  Widespread flooding and mountain avalanches have resulted from these moisture plumes as the impacted California, as well as dramatic replenishment of reservoirs.

fig1_cira-tpw

Figure 1.  CIRA total precipitable water product (inches) valid at (a) 2100 UTC 8 Jan 2017, and (b) 2100 UTC 10 Jan 2017.

 

SPoRT’s real-time instantiation of the Land Information System (aka “SPoRT-LIS”) has nicely depicted the substantial replenishment of the moisture content in the soils over California.  The SPoRT-LIS is an observations-driven, ~3-km resolution run of the Noah land surface model that consists of a 33-year climatology spanning 1981-2013, and real-time output at hourly intervals sent to select NOAA/NWS partnering forecast offices.  The one-year change in the SPoRT-LIS total column soil moisture at 1200 UTC 11 January (Fig. 2) shows large increases over most of California, particularly in the higher terrain (given by blue and purple shading).  [At the same time, annual degradation in soil moisture can be seen across the central and eastern U.S.]  Interestingly, a substantial portion of California’s annual soil moisture increases has occurred in just the past week (Fig. 3; SPoRT-LIS total column soil moisture change over the past week).  One can certainly see the important role that atmospheric rivers play in being “drought busters”!

fig2_swetdiff365_20170111_12z_conus

Figure 2.  One-year change in the SPoRT-LIS total column relative soil moisture, valid 1200 UTC 11 January 2017.

 

fig3_swetdiff_20170111_12z_conus

Figure 3.  One-week change in the SPoRT-LIS total column relative soil moisture, valid 1200 UTC 11 January 2017.

 

A map of the SPoRT-LIS daily soil moisture percentiles from 11 January highlight the very wet anomaly over California relative to the 33-year soil moisture climatology (Fig. 4; similar to the pattern of annual soil moisture change from Fig. 2).  Blue shading denotes greater than or equal to the 98th percentile, thus indicating unusually wet soils on the tail end of the historical distribution.

fig4_rsm02percent_20170111_12z_conus

Figure 4.  SPoRT-LIS total column relative soil moisture percentile from 11 January 2017.

 

Finally, SPoRT is acquiring and assimilating in real time the Soil Moisture Active Passive (SMAP) Level 2 (L2) retrievals produced by NASA/JPL into an experimental version of the SPoRT-LIS.  SPoRT is a SMAP Early Adopter and has a funded project to conduct soil moisture data assimilation experiments with LIS and evaluate impacts on land surface and numerical weather prediction models.  Figure 5 shows SMAP L2 retrievals of the evening overpasses from ~0000 UTC 11 January.  Panel (a) is the 36-km resolution radiometer product, while panel (b) shows the enhanced-resolution product, obtained from the SMAP radiometer by using Backus-Gilbert optimal interpolation techniques to provide data on a finer (9 km) grid.  The enhanced-resolution product provides much more detail of the wet soils in California, while retaining the same overall regional patterns as the original 36-km retrieval.  Given the loss of the active radar component of the SMAP mission, SPoRT plans to assimilate both the 36-km and 9-km products separately, and compare results on model accuracy.

fig5_smap-l2-11jan2017

Figure 5. SMAP Level 2 soil moisture retrievals for the evening overpasses from ~0000 UTC 11 January 2017; (a) 36-km resolution product; (b) enhanced 9-km resolution product.