Archive for the ‘JPSS Proving Ground’ Category

CrIS/ATMS soundings processed through the NOAA Unique Combine Processing System (NUCAPS) are available in AWIPS.  SPoRT is working with the Joint Polar Satellite System (JPSS) Proving Ground to testbed the utility of NUCAPS soundings to anticipate hurricane tropical to extratropical transition.  Although satellite derived soundings are “smoother” than radiosondes they can provide valuable information about the depth of moist or dry layers in data sparse regions. Forecasters can anticipate extratropical transition by identifying the dry slot and upstream potential vorticity anomalies on satellite imagery that may interact with a storm while also considering many other factors that lead to extratropical transition.  Although Hurricane Matthew is not expected to undergo extratropical transition for quite a few days, the NUCAPS Soundings can be used to diagnose the temperature and moisture characteristics surrounding the hurricane as highlighted below.

GOES-13 water vapor imagery shows dry upper levels west of Hurricane Matthew and abundant moisture surrounding the system (Fig. 1).  Since water vapor imagery can only detect moisture characteristics in the mid-to upper- levels of the atmosphere, the NUCAPS soundings (green dots on Fig. 1) can be analyzed to provide more information about the vertical extent of the dry air and whether it is in close proximity to the hurricane in the mid- to lower- levels.


Fig. 1. 5 October 2016 1830 UTC GOES-13 water vapor imagery and 1811 UTC NUCAPS Soundings. Green dots represent point and click soundings. Blue numbers label location of example soundings highlighted below.

Scroll down through the example Soundings to compare the changes in moisture conditions west of Hurricane Matthew. Soundings 1 and 2 (Fig. 2 and 3), taken in a region of dry air as identified by the orange color enhancement on the water vapor imagery, confirm a dry column throughout the depth of the atmosphere. Sounding 3 (Fig. 4) shows the drying is not as intense in the upper-levels and mid-level drying extends down to about 600 mb. Sounding 4 and 5 (Fig. 5 and 6) show upper level conditions are more moist closer to the hurricane, as expected from the water vapor imagery. While Sounding 4 (Fig. 5) shows moist conditions throughout the atmospheric column, Sounding 5 (Fig. 6) does show mid-level dry air is present.  Previous analysis of Sandy 2012 and Arthur 2014 showed the same signature (e. g., similar to Sounding 5) became more abundant surrounding the systems as upper-level dry air intruded.  Currently, there are very few soundings with this signature surrounding Hurricane Matthew.  The NUCAPS soundings confirm dry atmospheric conditions are well west of the system and there is very little mid- to low- level dry air in the proximity of the system.  This preliminary example is presented but as Hurricane Matthew continues to evolve NUCAPS Soundings and SPoRT Ozone Products will be analyzed to discern the utility for anticipating dry air intrusion and associated hurricane tropical to extratropical transition.

Sounding 1


Fig. 2. 5 October 2016 1811 UTC NUCAPS Sounding at Location 1.


Sounding 2


Fig. 3. 5 October 2016 1811 UTC NUCAPS Sounding at Location 2.

Sounding 3


Fig. 4. 5 October 2016 1811 UTC NUCAPS Sounding at Location 3.

Sounding 4


Fig. 5. 5 October 2016 1811 UTC NUCAPS Sounding at Location 4.

Sounding 5


Fig. 6. 5 October 2016 1811 UTC NUCAPS Sounding at Location 5.



Read Full Post »

So, recently I’ve had the opportunity to use and evaluate soundings from the NOAA Unique Combined Atmospheric Processing System (NUCAPS).  These soundings, produced by the ATMS and CrIS instruments onboard the Suomi NPP satellite, are available in AWIPS generally twice per day over any given location.


Image 1.  NUCAPS Sounding data availability example, ~19 UTC 24 July 2016. Colors represent quality control flags — green are considered best available and most representative data.

A couple of advantages of the NUCAPS soundings is they’re available in relatively high spatial resolution (image 1) and also in between radiosonde launches.  So, a forecaster wanting to know more about tropospheric conditions during the midday or early afternoon (usually the most crucial period for severe weather analysis) can utilize NUCAPS sounding data, since radiosonde data won’t be available until later in the evening (unless ~18 UTC launches are being conducted at their location).  On a number of days in recent weeks, a lack of sufficient boundary layer moisture (probably partly due to an ongoing drought in the region) have dampened convective development.  A good understanding of the degree of convective inhibition (CIN) present on a given day can be difficult to obtain and model analyses and forecasts don’t always seem to have a good handle on this.  Even other robust analyses often struggle with a seemingly accurate depiction of CIN on many days.  However, knowledge of CIN, among other factors, can be important when forecasting probabilities for convective development on summer days.

Recently however, I’ve noticed that NUCAPS soundings did indicate the presence of CIN when convective development was perhaps less than expected or forecast.  July 20th was one of these days.  Take a look at the NAM Bufr Sounding for HSV, valid for 19 UTC on 20 July 2016 (image 2).


Image 2.  NAM Bufr Sounding for KHSV, 19 UTC 20 July 2016

The NAM Bufr model sounding indicated robust CAPE values (generally >2500 J/Kg) and little to no CIN.  Now, let’s take a look at a couple of nearby representative NUCAPS soundings (unfortunately, they don’t include the associated data tables).  Image 3 shows the locations of the NUCAPS soundings with respect to the KHSV observation site and the location in the NAM forecast sounding above (image 2).


Image 3.  NUCAPS Sounding locations for image 4…also, the KHSV location in northern Alabama


Image 4.  NUCAPS Soundings at 19 UTC for location A (left, west of KHSV) and location B (right, southwest of KHSV), 20 July 2016

Even though data tables are not shown from the NUCAPS soundings, notice that they indicate much less instability and less steep lapse rates than the NAM Bufr sounding prognostications for the same time (19 UTC).   Also, notice that LCL levels are below the LFC, indicating some amount of CIN at both locations.  If memory serves correctly, NUCAPS soundings indicated CIN values around 25-50 J/Kg at this time.  So, for a forecaster struggling with the likelihood/coverage of convective development and the strength of convective updrafts, the NUCAPS data would have suggested lesser magnitude for both, over the NAM progs.  Image 5 shows the general dearth of convective activity in the area of northern Alabama near 19 UTC that day.  And indeed, convection was generally limited through the afternoon, with mostly isolated, small cells present.


Image 5. Composite reflectivity (dBZ) at 1830 UTC 20 July 2016

When viewing the NUCAPS soundings, I’ve generally been looking for CAPE/CIN values while in the convective season.  Of course, having to click on a number of soundings can be a bit laborious.  As part of a JPSS Proving-Ground/Risk Reduction multi-organization project, researchers at CIMSS, CIRA, GINA and NASA SPoRT have developed gridded NUCAPS data, which were utilized in the Hazardous Weather Testbed this past spring.  I’ll be working with members of the SPoRT team to ingest those data in AWIPS II here at the HUN office in the near future for my own testing, evaluation and feedback to the NUCAPS group within the JPSS Proving Ground.  I’m looking forward to the future use and evaluation of these potentially useful operational data sets.

Read Full Post »

A potent winter storm system impacted portions of New Mexico on March 26, 2016, ending an extended stretch of very dry weather. Snowfall amounts of 3 to 9 inches were reported from the Sangre de Cristo Mountains eastward across the northeast plains. The MODIS and VIIRS satellite products proved useful for illustrating the extent of snow cover in both the daytime and nighttime scenes. The images below are graphical briefings posted to the NWS Albuquerque web page and shared via Twitter after this much needed snowfall event.

Graphical briefing showing the extent of snow cover during the nighttime and daytime periods on March 27, 2016.

Graphical briefing (part one) showing the extent of snow cover during the nighttime and daytime periods on March 27, 2016.

Graphical briefing showing the extent of snow cover through RGBs on March 27, 2016.

Graphical briefing (part two) showing the extent of snow cover through RGBs on March 27, 2016.

Read Full Post »

Forecaster Jennifer Palucki from Albuquerque, New Mexico submitted a nice case study to our online evaluation form being used during the current 2016 NESDIS Snowfall Rate Evaluation.  Here are some of her discussion and impressions of using the product:

A very well defined band of snow developed along a frontal boundary extending from the southern Sangre de Cristo Mountains, toward Las Vegas, and continued southeastward toward Melrose. Initially the southeast part of the band was rain, but as temps dropped it changed to snow. At 0052z (552pm MST; see image below) the merged SFR likely did very well distinguishing where there was snow and no snow, however, in areas that there was snow, amounts were way underdone. At 545pm, approximately 4″ of snow had fallen in Sapello in the southern Sangre de Cristo Mtns. Snow likely started around 1 or 2pm, which is an average of about 1″/hr compared to the 0.3″/hr the SFR product was showing with an 18:1 ratio. Thus, the amounts via the SFR product were largely underdone. It was still snowing heavily according to the spotter at 545pm. At 645pm, approximately 1.5 inches of snow was reported in Las Vegas. The SFR product was showing around 0.1″/hr for this area.


NESDIS SFR Product at 0052 UTC on 03 February 2016 showing light snow over Las Vegas, NM.

Another pass at 0330z (830pm MST; see image below), the SFR product missed the southeastern extent of the snowfall, and again had amounts that were likely underdone. A report of 0.5 inches of snow in the last hour was reported at 841pm in Taos. The SFR product showed around 0.02 liquid equivalent, or around 0.3″/hr snowfall rate given 18:1 ratio (which should be close to the snow ratios in that area).


NESDIS SFR Product at 0330 UTC on 03 February 2016 showing some heavier snow over Taos, NM.

Really like using this product to gather intel on where it is snowing in areas without radar coverage. Do have some concerns about the amounts, especially in these scenarios where the heavier amounts are likely isolated. In this case, the band was very narrow, likely no more than 10 to 15 miles wide.

Read Full Post »

Winter Storm Jonas tracked across the eastern United States this past weekend dropping near-record amounts of snowfall in a track from West Virginia through southern New York.  Two things about this storm are particularly interesting:  1) the heavy amounts of snow that fell for long periods of time and 2) the relatively narrow swath of the heaviest snows.  Below is the 48-hour snow accumulations from the National Weather Service ending Sunday, January 24.  It is striking that New York City received on the order of 30 inches of snow, while areas less than 100 miles to the north received little if any snow.


48-hour snowfall totals ending Sunday, January 24, 2016 (from NWS Central Region).  Contours are every 3″ with the darkest reds indicating 30″ of snow.

Select Eastern Region WFOs are currently evaluating the NESDIS Snowfall Rate product, which uses passive microwave observations from 5 sensors, to observe total column snowfall rates.  Below is a series of images from this past weekend showing the SFR product displayed as a 10:1 solid/liquid conversion.  The darkest greens indicate snowfall rates at the top of the sensor detection range at approximately 2″/hr.  Depending on the actual solid/liquid ratio in individual areas, rates may have been higher.



NESDIS SFR Product showing the evolution of Winter Storm Jonas from late on Friday through early Sunday.  The darkest greens indicate solid snowfall rates of around 2″/hr.

In the images, the NESDIS SFR product shows very good agreement with the location and track of the heaviest snows (greens) compared to the heaviest totals in the ground reports.  Additionally, the SFR product does well in picking up the abrupt northern edge of the snowfall (especially across southern New York).

UPDATE:  The Sterling, VA WFO included mention of the SFR product in a forecast discussion to confirm snowfall rates that would cause white out conditions:


Read Full Post »

Beginning in the morning hours of 22 January 2016, rain began to change to snow across Mississippi, Tennessee, and Alabama.  The NESDIS Snowfall Rate, which is currently being evaluated by a handful of Weather Forecast Offices, has the ability to differentiate rain from snow.  This ability was particularly important for the large winter storm impacting much of the eastern half of the United States.  The animation below shows the 10:1 Solid SFR Product with METAR station observations indicating temperatures and precipitation.


The animation shows the evolution of snow across the area beginning with snow in Western Tennessee and Eastern Mississippi at around 1200 UTC (6:00a local time).  Also of note at that same time is that the SFR Product indicates relatively heavy snow (~1.5 in./hr. solid snow) directly over the Nashville area; however, the METAR site at the airport is still reporting rain.  In the following hour (1300 UTC; not shown in the loop here because there was no SFR product valid near 1300 UTC) Nashville was reporting snow.  Thus, the SFR product was seeing in-cloud snow in that area that began to reach the ground within an hour of the observation.  This is one way forecasters can use the product to view in-cloud snow to determine the potential for snow to reach the ground.

Later in the period, a similar set up appears in the Huntsville area at the Madison County Executive Airport (KMDQ).  The 1853 UTC SFR product shows light snow over Madison County, but the 1900 UTC METAR was not yet reporting any snow.  However, the 2000 UTC METAR showed snow beginning to fall across the Huntsville area.  The change over to snow falling across Western Madison county into Central Madison county was between 1830 and 1900 UTC, verified as I drove home from work.

The NESDIS SFR product will continue to be evaluated as blizzard conditions begin to set up along parts of the East Coast.

Read Full Post »

The NESDIS Snowfall Rate (SFR) product assessment is in full swing at NWS Albuquerque and forecasters are already capturing some good cases over data sparse regions. The first week of January 2016 was very active across New Mexico as back to back winter storm systems crossed the area. The second system in the series crossed over the Four Corners region on 4 January 2016, producing light to moderate snowfall rates for several hours. The forecaster on shift noted the observation at Farmington, NM (KFMN) indicated light snow with a visibility of 5 statute miles. A quick glance at the SFR procedure used in Figure 1a shows the extent of any precipitation echoes well to the east of KFMN at 0000 UTC 5 January 2016. The nearest radar (KABX, not shown) is located roughly 150 miles southeast of KFMN near Albuquerque, NM. The arrival of a SFR product at 0010 UTC 5 January 2016 showed the extent of the precipitation was much greater with the merged POES image overlaid on the radar data (Figure 1b). Sampled liquid equivalent values in the light green areas to the east of KFMN were near 0.03″/hour.

Figure 1a. Liquid equivalent values of the merged SFR product valid 0000 UTC 5 January 2016. KFMN is denoted by the white circle. Note the extent of the radar coverage is well east of KFMN.

Figure 1b. Liquid equivalent values of the merged SFR product valid 0010 UTC 5 January 2016. KFMN is denoted by the white circle. Note the extent of the snowfall coverage is much greater with the addition of the POES image.

The Terminal Aerodrome Forecast (TAF) issued for KFMN shortly before the receipt of this image indicated temporary fluctuations in the visibility to 1 statute mile with light snow and an overcast ceiling near 1,200 ft between 0000 UTC and 0400 UTC (Instrument Flight Rules, IFR). It is not clear whether any operational changes occurred based on the receipt of the merged SFR product or whether the product increased confidence on the IFR forecast. However, it is entirely possible given the improvement in product latency compared to the 2015 assessment that the imagery could be used in this way.

The webcam available at San Juan College just a short distance from the KFMN observation showed significant decreases in the visibility between 330pm and shortly after sunset (Figure 2a and 2b). The two images below show the decrease in surface visibility as well as notable accumulations on grassy surfaces in front of the college. An observer 3 miles southeast of Farmington did report a total accumulation of 1″ from this event. The merged SFR product did in fact show higher rates immediately to the east of KFMN. The last image in the series shows the impact on travel conditions noted by the NM Department of Transportation web page (Figure 3). The areal coverage of the difficult travel impacts (yellow highlights) was greater than that depicted by what can be seen based on poor radar coverage.

Figure 2a. Webcam at San Juan College around 330pm. Note the light snowfall beginning to develop over the distant mesas behind the college.

Figure 2a. Webcam at San Juan College around 330pm. Note the light snowfall beginning to develop over the distant mesas behind the college.

Figure 2b. Webcam at San Juan College shortly after sunset. Note the dramatic decrease in visibility and light snow accumulations on grassy surfaces in front of the college.

Figure 2b. Webcam at San Juan College shortly after sunset. Note the dramatic decrease in visibility and light snow accumulations on grassy surfaces in front of the college.

Figure 3. Screen capture of NM DOT web page showing areal coverage of difficult travel conditions (yellow highlights) and some text summaries detailing the impacts.

Read Full Post »

Older Posts »