Feeds:
Posts
Comments

Archive for the ‘JPSS Proving Ground’ Category

So, recently I’ve had the opportunity to use and evaluate soundings from the NOAA Unique Combined Atmospheric Processing System (NUCAPS).  These soundings, produced by the ATMS and CrIS instruments onboard the Suomi NPP satellite, are available in AWIPS generally twice per day over any given location.

NUCAPS_exampleswath

Image 1.  NUCAPS Sounding data availability example, ~19 UTC 24 July 2016. Colors represent quality control flags — green are considered best available and most representative data.

A couple of advantages of the NUCAPS soundings is they’re available in relatively high spatial resolution (image 1) and also in between radiosonde launches.  So, a forecaster wanting to know more about tropospheric conditions during the midday or early afternoon (usually the most crucial period for severe weather analysis) can utilize NUCAPS sounding data, since radiosonde data won’t be available until later in the evening (unless ~18 UTC launches are being conducted at their location).  On a number of days in recent weeks, a lack of sufficient boundary layer moisture (probably partly due to an ongoing drought in the region) have dampened convective development.  A good understanding of the degree of convective inhibition (CIN) present on a given day can be difficult to obtain and model analyses and forecasts don’t always seem to have a good handle on this.  Even other robust analyses often struggle with a seemingly accurate depiction of CIN on many days.  However, knowledge of CIN, among other factors, can be important when forecasting probabilities for convective development on summer days.

Recently however, I’ve noticed that NUCAPS soundings did indicate the presence of CIN when convective development was perhaps less than expected or forecast.  July 20th was one of these days.  Take a look at the NAM Bufr Sounding for HSV, valid for 19 UTC on 20 July 2016 (image 2).

NAMBufr_HSV_20July2016_19Z_cropped

Image 2.  NAM Bufr Sounding for KHSV, 19 UTC 20 July 2016

The NAM Bufr model sounding indicated robust CAPE values (generally >2500 J/Kg) and little to no CIN.  Now, let’s take a look at a couple of nearby representative NUCAPS soundings (unfortunately, they don’t include the associated data tables).  Image 3 shows the locations of the NUCAPS soundings with respect to the KHSV observation site and the location in the NAM forecast sounding above (image 2).

SoundingLocations_blog

Image 3.  NUCAPS Sounding locations for image 4…also, the KHSV location in northern Alabama

July202016_NUCAPSSoundings_Blog

Image 4.  NUCAPS Soundings at 19 UTC for location A (left, west of KHSV) and location B (right, southwest of KHSV), 20 July 2016

Even though data tables are not shown from the NUCAPS soundings, notice that they indicate much less instability and less steep lapse rates than the NAM Bufr sounding prognostications for the same time (19 UTC).   Also, notice that LCL levels are below the LFC, indicating some amount of CIN at both locations.  If memory serves correctly, NUCAPS soundings indicated CIN values around 25-50 J/Kg at this time.  So, for a forecaster struggling with the likelihood/coverage of convective development and the strength of convective updrafts, the NUCAPS data would have suggested lesser magnitude for both, over the NAM progs.  Image 5 shows the general dearth of convective activity in the area of northern Alabama near 19 UTC that day.  And indeed, convection was generally limited through the afternoon, with mostly isolated, small cells present.

CompRefl_NUCAPSLocations_20July2016_1856Z

Image 5. Composite reflectivity (dBZ) at 1830 UTC 20 July 2016

When viewing the NUCAPS soundings, I’ve generally been looking for CAPE/CIN values while in the convective season.  Of course, having to click on a number of soundings can be a bit laborious.  As part of a JPSS Proving-Ground/Risk Reduction multi-organization project, researchers at CIMSS, CIRA, GINA and NASA SPoRT have developed gridded NUCAPS data, which were utilized in the Hazardous Weather Testbed this past spring.  I’ll be working with members of the SPoRT team to ingest those data in AWIPS II here at the HUN office in the near future for my own testing, evaluation and feedback to the NUCAPS group within the JPSS Proving Ground.  I’m looking forward to the future use and evaluation of these potentially useful operational data sets.

Read Full Post »

A potent winter storm system impacted portions of New Mexico on March 26, 2016, ending an extended stretch of very dry weather. Snowfall amounts of 3 to 9 inches were reported from the Sangre de Cristo Mountains eastward across the northeast plains. The MODIS and VIIRS satellite products proved useful for illustrating the extent of snow cover in both the daytime and nighttime scenes. The images below are graphical briefings posted to the NWS Albuquerque web page and shared via Twitter after this much needed snowfall event.

Graphical briefing showing the extent of snow cover during the nighttime and daytime periods on March 27, 2016.

Graphical briefing (part one) showing the extent of snow cover during the nighttime and daytime periods on March 27, 2016.

Graphical briefing showing the extent of snow cover through RGBs on March 27, 2016.

Graphical briefing (part two) showing the extent of snow cover through RGBs on March 27, 2016.

Read Full Post »

Forecaster Jennifer Palucki from Albuquerque, New Mexico submitted a nice case study to our online evaluation form being used during the current 2016 NESDIS Snowfall Rate Evaluation.  Here are some of her discussion and impressions of using the product:

A very well defined band of snow developed along a frontal boundary extending from the southern Sangre de Cristo Mountains, toward Las Vegas, and continued southeastward toward Melrose. Initially the southeast part of the band was rain, but as temps dropped it changed to snow. At 0052z (552pm MST; see image below) the merged SFR likely did very well distinguishing where there was snow and no snow, however, in areas that there was snow, amounts were way underdone. At 545pm, approximately 4″ of snow had fallen in Sapello in the southern Sangre de Cristo Mtns. Snow likely started around 1 or 2pm, which is an average of about 1″/hr compared to the 0.3″/hr the SFR product was showing with an 18:1 ratio. Thus, the amounts via the SFR product were largely underdone. It was still snowing heavily according to the spotter at 545pm. At 645pm, approximately 1.5 inches of snow was reported in Las Vegas. The SFR product was showing around 0.1″/hr for this area.

ABQ_160203_0052Z_annotated_zoom

NESDIS SFR Product at 0052 UTC on 03 February 2016 showing light snow over Las Vegas, NM.

Another pass at 0330z (830pm MST; see image below), the SFR product missed the southeastern extent of the snowfall, and again had amounts that were likely underdone. A report of 0.5 inches of snow in the last hour was reported at 841pm in Taos. The SFR product showed around 0.02 liquid equivalent, or around 0.3″/hr snowfall rate given 18:1 ratio (which should be close to the snow ratios in that area).

ABQ_160203_0330Z_annotated

NESDIS SFR Product at 0330 UTC on 03 February 2016 showing some heavier snow over Taos, NM.

Really like using this product to gather intel on where it is snowing in areas without radar coverage. Do have some concerns about the amounts, especially in these scenarios where the heavier amounts are likely isolated. In this case, the band was very narrow, likely no more than 10 to 15 miles wide.

Read Full Post »

Winter Storm Jonas tracked across the eastern United States this past weekend dropping near-record amounts of snowfall in a track from West Virginia through southern New York.  Two things about this storm are particularly interesting:  1) the heavy amounts of snow that fell for long periods of time and 2) the relatively narrow swath of the heaviest snows.  Below is the 48-hour snow accumulations from the National Weather Service ending Sunday, January 24.  It is striking that New York City received on the order of 30 inches of snow, while areas less than 100 miles to the north received little if any snow.

NWS_SnowTotals

48-hour snowfall totals ending Sunday, January 24, 2016 (from NWS Central Region).  Contours are every 3″ with the darkest reds indicating 30″ of snow.

Select Eastern Region WFOs are currently evaluating the NESDIS Snowfall Rate product, which uses passive microwave observations from 5 sensors, to observe total column snowfall rates.  Below is a series of images from this past weekend showing the SFR product displayed as a 10:1 solid/liquid conversion.  The darkest greens indicate snowfall rates at the top of the sensor detection range at approximately 2″/hr.  Depending on the actual solid/liquid ratio in individual areas, rates may have been higher.

SFR_Collage_first4

SFR_Collage_second4

NESDIS SFR Product showing the evolution of Winter Storm Jonas from late on Friday through early Sunday.  The darkest greens indicate solid snowfall rates of around 2″/hr.

In the images, the NESDIS SFR product shows very good agreement with the location and track of the heaviest snows (greens) compared to the heaviest totals in the ground reports.  Additionally, the SFR product does well in picking up the abrupt northern edge of the snowfall (especially across southern New York).

UPDATE:  The Sterling, VA WFO included mention of the SFR product in a forecast discussion to confirm snowfall rates that would cause white out conditions:

Sterling_AFD

Read Full Post »

Beginning in the morning hours of 22 January 2016, rain began to change to snow across Mississippi, Tennessee, and Alabama.  The NESDIS Snowfall Rate, which is currently being evaluated by a handful of Weather Forecast Offices, has the ability to differentiate rain from snow.  This ability was particularly important for the large winter storm impacting much of the eastern half of the United States.  The animation below shows the 10:1 Solid SFR Product with METAR station observations indicating temperatures and precipitation.

AL_TN_SFR_Example_20160122_07-19Z_slower

The animation shows the evolution of snow across the area beginning with snow in Western Tennessee and Eastern Mississippi at around 1200 UTC (6:00a local time).  Also of note at that same time is that the SFR Product indicates relatively heavy snow (~1.5 in./hr. solid snow) directly over the Nashville area; however, the METAR site at the airport is still reporting rain.  In the following hour (1300 UTC; not shown in the loop here because there was no SFR product valid near 1300 UTC) Nashville was reporting snow.  Thus, the SFR product was seeing in-cloud snow in that area that began to reach the ground within an hour of the observation.  This is one way forecasters can use the product to view in-cloud snow to determine the potential for snow to reach the ground.

Later in the period, a similar set up appears in the Huntsville area at the Madison County Executive Airport (KMDQ).  The 1853 UTC SFR product shows light snow over Madison County, but the 1900 UTC METAR was not yet reporting any snow.  However, the 2000 UTC METAR showed snow beginning to fall across the Huntsville area.  The change over to snow falling across Western Madison county into Central Madison county was between 1830 and 1900 UTC, verified as I drove home from work.

The NESDIS SFR product will continue to be evaluated as blizzard conditions begin to set up along parts of the East Coast.

Read Full Post »

The NESDIS Snowfall Rate (SFR) product assessment is in full swing at NWS Albuquerque and forecasters are already capturing some good cases over data sparse regions. The first week of January 2016 was very active across New Mexico as back to back winter storm systems crossed the area. The second system in the series crossed over the Four Corners region on 4 January 2016, producing light to moderate snowfall rates for several hours. The forecaster on shift noted the observation at Farmington, NM (KFMN) indicated light snow with a visibility of 5 statute miles. A quick glance at the SFR procedure used in Figure 1a shows the extent of any precipitation echoes well to the east of KFMN at 0000 UTC 5 January 2016. The nearest radar (KABX, not shown) is located roughly 150 miles southeast of KFMN near Albuquerque, NM. The arrival of a SFR product at 0010 UTC 5 January 2016 showed the extent of the precipitation was much greater with the merged POES image overlaid on the radar data (Figure 1b). Sampled liquid equivalent values in the light green areas to the east of KFMN were near 0.03″/hour.

Figure 1a. Liquid equivalent values of the merged SFR product valid 0000 UTC 5 January 2016. KFMN is denoted by the white circle. Note the extent of the radar coverage is well east of KFMN.

Figure 1b. Liquid equivalent values of the merged SFR product valid 0010 UTC 5 January 2016. KFMN is denoted by the white circle. Note the extent of the snowfall coverage is much greater with the addition of the POES image.

The Terminal Aerodrome Forecast (TAF) issued for KFMN shortly before the receipt of this image indicated temporary fluctuations in the visibility to 1 statute mile with light snow and an overcast ceiling near 1,200 ft between 0000 UTC and 0400 UTC (Instrument Flight Rules, IFR). It is not clear whether any operational changes occurred based on the receipt of the merged SFR product or whether the product increased confidence on the IFR forecast. However, it is entirely possible given the improvement in product latency compared to the 2015 assessment that the imagery could be used in this way.

The webcam available at San Juan College just a short distance from the KFMN observation showed significant decreases in the visibility between 330pm and shortly after sunset (Figure 2a and 2b). The two images below show the decrease in surface visibility as well as notable accumulations on grassy surfaces in front of the college. An observer 3 miles southeast of Farmington did report a total accumulation of 1″ from this event. The merged SFR product did in fact show higher rates immediately to the east of KFMN. The last image in the series shows the impact on travel conditions noted by the NM Department of Transportation web page (Figure 3). The areal coverage of the difficult travel impacts (yellow highlights) was greater than that depicted by what can be seen based on poor radar coverage.

Figure 2a. Webcam at San Juan College around 330pm. Note the light snowfall beginning to develop over the distant mesas behind the college.

Figure 2a. Webcam at San Juan College around 330pm. Note the light snowfall beginning to develop over the distant mesas behind the college.

Figure 2b. Webcam at San Juan College shortly after sunset. Note the dramatic decrease in visibility and light snow accumulations on grassy surfaces in front of the college.

Figure 2b. Webcam at San Juan College shortly after sunset. Note the dramatic decrease in visibility and light snow accumulations on grassy surfaces in front of the college.

Figure 3. Screen capture of NM DOT web page showing areal coverage of difficult travel conditions (yellow highlights) and some text summaries detailing the impacts.

Read Full Post »

A slow-moving upper level storm system tracked east across northern NM and southern CO on 14-15 December 2015. A weak tap of subtropical moisture ahead of this system provided light to moderate snowfall mainly along the Continental Divide of western NM and the higher terrain running north-south through central and northern NM. Snow accumulations of 3 to 8 inches were reported ahead of and immediately behind the surface front and the mid level trough passage. A classic westerly,upslope flow event developed behind the upper wave as moist, unstable flow interacted with the north-south oriented higher terrain. Winter weather advisories and winter storm warnings were in effect over much of northern NM for the expectation of storm total snowfall of 8 to 12″ with locally higher amounts. Figure 1 depicts the distribution of advisories and warnings over northern NM on the Albuquerque National Weather Service public page.

Advisory and warning map for the ABQ CWA valid 15 December 2015.

Figure 1. Advisory and warning map for the ABQ County Warning Area valid 15 December 2015.

Poor radar coverage over northern and western NM makes it a challenge for assessing winter precipitation patterns and snowfall rates. Figure 2 shows a radar mosaic valid 1800 UTC 15 December 2015 utilizing an enhanced color curve to identify areas of lighter snowfall. Automated surface observations are sparse in this area however there are at least a few observations reporting snow where nothing is present in the radar reflectivity. Webcams at ski resorts serve as an excellent near real-time proxy for visualizing active snow accumulations in these poor radar coverage regions. Additionally, once daily snow accumulation reports from ski resorts aid the verification process following the winter event.

Figure 2. Winter radar mosaic from KABX valid 1800 UTC 15 December 2015. Note the orange circle depicting a large area of poor radar coverage.

The integration of satellite data allows forecasters to supplement these data void areas. The most recent interation of the NESDIS snowfall rate products available at WFO Albuquerque illustrate the snowfall rate derived from radar (Figure 3a) and the snowfall rate available from merging the POES satellite data with the radar data (Figure 3b). Note the grey areas overlaid on the map in Figure 3a indicate areas of reliable radar coverage. The snowfall rate derived from satellite data in Figure 3b clearly shows coverage outside of the area with reliable radar coverage. A very cold and unstable airmass in association with this precipitation suggested snowfall rates in the higher terrain would average between 20-30:1. The 18:1 image in the lower right of Figure 3b indicated rates around 0.4/hr.

FIgure 3a. Radar derived snowfall rate product over northern NM valid 1750 UTC 15 December 2015.

Figure 3a. Radar derived snowfall rate product over northern NM valid 1750 UTC 15 December 2015. Note the grey areas overlaid on the map indicating where reliable radar coverage exists. Upper left (liquid equivalent), upper right (10:1), lower right (18:1), lower left (36:1).

NESDIS snowfall rate product filling in the radar gaps over northern NM valid 1750 UTC 15 December 2015. Note the circles in the upper left image are the location of the webcams in Figure 4.

Although there is sparse coverage of automated surface observations around the higher terrain, webcams from ski resorts can verify the existence of moderate to heavy snowfall. Visibilities in the webcams below suggest snowfall rates higher than those depicted in the NESDIS products – visually, rates look closer to perhaps 1″/hr in the upper right and lower right images (Figure 4). One of our goals of this assessment is to combine information from the webcams with the more quantitative snowfall rate product to better estimate snowfall in data void areas. Snowfall reports from the Chama Railyard indicated 8.5″, Taos Ski Valley 6″, Ski Santa Fe 12″, and Pajarito Mountain 10″.

 

Figure 4. Webcams from across northern NM. Top left (Chama Railyard, yellow circle), Top right (Taos Ski Valley, white circle), Bottom right (Ski Santa Fe, red circle), Bottom left (Pajarito Mt, orange circle).

 

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 2,028 other followers